K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

A' B' C' A B C M N c a a b a căn 2 a căn 3

23 tháng 3 2016

Đặt \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},\overrightarrow{AA'}=\overrightarrow{c}\)

với \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\)

và \(\left|\overrightarrow{a}\right|=a,\overrightarrow{\left|b\right|}=a\sqrt{2},\left|\overrightarrow{c}\right|=a\sqrt{3}\)

khi đó 

\(\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{c,}\overrightarrow{BC}=-\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)

Giả sử đường vuông góc chung cắt \(\overrightarrow{AB}\) tại M và cắt \(\overrightarrow{BC'}\) tại N và \(\overrightarrow{AM}=x.\overrightarrow{AB'}=x.\overrightarrow{a}+x.\overrightarrow{c},\overrightarrow{BN}=y.\overrightarrow{BC'}=-y.\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Suy ra \(\overrightarrow{AN}=\left(1-y\right)\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Và do đó

\(\overrightarrow{MN}=\left(1-x-y\right)\overrightarrow{a}+y.\overrightarrow{b}+\left(y-x\right)\overrightarrow{c}\)

Ta có :

\(MN\perp AB',BC'\Leftrightarrow\begin{cases}\overrightarrow{MN}.\overrightarrow{AB}=0\\\overrightarrow{MN}.\overrightarrow{BC'}=0\end{cases}\)

                            \(\Leftrightarrow\begin{cases}-4x+2y+1=0\\-2x+6y-1=0\end{cases}\)

Giải hệ ta thu được \(x=\frac{2}{5},y=\frac{3}{10}\)

Từ đó :

\(MN^2=\left[\left(1-x-y\right)^2+2y^2+3\left(y-x\right)^2\right].a^2=\frac{39^a}{100}\)

Suy ra \(d\left(AB';BC'\right)=\frac{a\sqrt{39}}{10}\)

2 tháng 2 2016

(a)đi pua cc" và song song với 2 đt AH,CB'

31 tháng 3 2017

Giải bài 8 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 8 trang 92 sgk Hình học 11 | Để học tốt Toán 11

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 2:

Ta có: \(y=\frac{x-2}{x-1}\Rightarrow y'=\frac{1}{(x-1)^2}\)

Do đó pt tiếp tuyến của đồ thị (C) tại \(M(a, \frac{a-2}{a-1})\) là:

\(y=f'(a)(x-a)+f(a)\)

\(\Leftrightarrow y=\frac{1}{(a-1)^2}(x-a)+\frac{a-2}{a-1}\) (d)

Đường thẳng trên có vecto pháp tuyến \((\frac{1}{(a-1)^2}, -1)\) nên vecto chỉ phương là: \((1, \frac{1}{(a-1)^2})\)

Vecto chỉ phương của đường thẳng \(\overrightarrow{IM}\) là \((a-1,\frac{a-2}{a-1}-1)\)

Vì hai đường thẳng trên vuông góc với nhau nên:

\(\overrightarrow{d}.\overrightarrow{IM}=\overrightarrow{0}\)

\(\Leftrightarrow (1, \frac{1}{(a-1)^2})(a-1, \frac{a-2}{a-1}-1)=0\)

\(\Leftrightarrow a-1+\frac{1}{(a-1)^2}\left(\frac{a-2}{a-1}-1\right)=0\)

\(\Leftrightarrow a-1-\frac{1}{(a-1)^3}=0\)

\(\Leftrightarrow (a-1)^4=1\Leftrightarrow a=2, a=0\)

\(\Rightarrow \left[\begin{matrix} M=(2, 0)\\ M=(0,2)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2018

Bài 1:

Gọi tọa độ điểm \(M(a,a^3-3a+1)\)

Có: \(y=x^3-3x+1\Rightarrow y'=3x^2-3\). Phương trình tiếp tuyến của (C) tại điểm $M$ là:

\(y=y'(a)(x-a)+y(a)\)

\(\Leftrightarrow y=(3a^2-3)(x-a)+a^3-3a+1\)

Để qua M kẻ được đúng một tiếp tuyến tới $(C)$ thì phương trình hoành độ giao điểm:

\((3a^2-3)(x-a)+a^3-3a+1=x^3-3x+1(*)\) chỉ có đúng duy nhất một nghiệm.

Ta có:

\((*)\Leftrightarrow (x^3-a^3)-(3x-3a)-(x-a)(3a^2-3)=0\)

\(\Leftrightarrow (x-a)(x^2+xa+a^2-3a^2)=0\)

\(\Leftrightarrow (x-a)(x^2+xa-2a^2)=0\)

\(\Leftrightarrow (x-a)^2(x+2a)=0\)

Để pt có nghiệm duy nhất thì \(a=-2a\Leftrightarrow a=0\)

\(\Rightarrow M(0,1)\)