Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}=1\) (vì x+y=xy)
tick nhé
Xét hai trường hợp b nguyên dương và b nguyên âm
Xét b nguyên dương . Vì a,b cùng dấu nên a nguyên dương.Ta có : \(\frac{a}{b}>\frac{0}{b}=0\). Vậy \(\frac{a}{b}\)là số hữu tỉ dương
Xét b nguyên âm . Vì a,b cùng dấu nên a nguyên âm => -a nguyên dương . Do đó : \(\frac{a}{b}=\frac{-a}{-b}>\frac{0}{-b}=0\). Vậy \(\frac{a}{b}\)là số hữu tỉ dương.
Tóm lại \(\frac{a}{b}\)là số hữu tỉ dương nếu a và b cùng dấu
Tương tự nếu a và b khác dấu thì \(\frac{a}{b}\)là số hữu tỉ âm
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương
\(x+y=xy\Leftrightarrow\frac{x+y}{xy}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=1\)
x+y - xy = 0 => x = y/(y-1)
1/x + 1/y = y-1/y +1/y = 1
\(\frac{1}{x}+\frac{1}{y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}=\frac{xy}{xy}=1\)