Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Gọi P, Q lần lượt là trung điểm của BC và C'D'.
Ta có S ∆ O P N = 1 4 S ∆ B C D = 1 8 S A B C D = a 2 8 ⇒ V O P N . O ' M Q = a 3 8
mà
V O O ' M N = V O P N . O ' M Q - V M . O P N - V N . O ' M Q = a 3 8 - 1 3 . a 3 8 - 1 3 . a 3 8 = a 3 24
Chọn D
(Do E, F, G lần lượt là trung điểm của BC, BD, CD).
Do mặt phẳng (MNP) (BCD) nên
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BH\\BH\perp AC\left(\text{H là trực tâm ABC}\right)\end{matrix}\right.\) \(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)
Lại có I là trực tâm SBC \(\Rightarrow BI\perp SC\) (2)
(1);(2) \(\Rightarrow SC\perp\left(BIH\right)\Rightarrow SC\perp IH\) (3)
Gọi M là giao điểm AH và BC \(\Rightarrow\) M là trung điểm BC (do tam giác ABC đều)
Mà SBC cân tại S (dễ dàng chứng minh SB=SC bằng Pitago) \(\Rightarrow SM\) đồng thời là đường cao trong tam giác SBC hay \(I\in SM\)
\(\Rightarrow IH\in\left(SAM\right)\)
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AH\perp BC\left(\text{H là trực tâm ABC}\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp IH\) (4)
(3); (4) \(\Rightarrow IH\perp\left(SBC\right)\)
b.
\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow SM=\sqrt{SA^2+AM^2}=\dfrac{a\sqrt{39}}{2}\)
ABC đều nên H là trực tâm đồng thời là trọng tâm \(\Rightarrow\dfrac{MH}{AM}=\dfrac{1}{3}\) \(\Rightarrow MH=\dfrac{AM}{3}=\dfrac{a\sqrt{3}}{6}\)
\(\Rightarrow IM=MH.cos\widehat{AMS}=MH.\dfrac{AM}{SM}=\dfrac{a\sqrt{39}}{78}\)
\(V_{IHBC}=\dfrac{IM}{SM}.\dfrac{MH}{AM}.V_{SABC}=\dfrac{1}{117}.\dfrac{1}{3}.3a.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{3}}{468}\)
Gọi cạnh của tứ diện đều ABCD là a thì cạnh của hình bát diện đều (H) là \(\dfrac{a}{2}\). Khi đó :
\(V_{ABCD}=a^3\dfrac{\sqrt{2}}{12};V_{\left(H\right)}=\dfrac{1}{3}\left(\dfrac{a}{2}\right)^3\sqrt{2}=a^3\dfrac{\sqrt{2}}{24}\)
Từ đó suy ra :
\(\dfrac{V_{\left(H\right)}}{V_{ }ABCD}=\dfrac{1}{2}\)
nên \(V_{A'B'C'D'}=\dfrac{1}{27}V_{ABCD}=\dfrac{\sqrt{2}}{324}a^2\)