K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Chọn B.

Vì G là trọng tâm của tam giác BCD nên 

14 tháng 5 2017

Đáp án A.

Gọi I là tâm mặt cầu ngoại tiếp ABCD => I ∈ ∆ và IA = IB = R

=> Thể tích mặt cầu ngoại tiếp ABCD nhỏ nhất ⇔  IB nhỏ nhất

25 tháng 8 2018

16 tháng 12 2018

Đáp án D

Trong(ABC), ta có: BG cắt AC tại M

Trong (ABD), ta có: BG’ cắt AD tại N

⇒ (BGG’) ∩ (ACD) = MN

Thiết diện cần tìm là (BMN)

Xét tam giác BMN có:

MN = 1 2 CD = a 2 ( MN là đường trung bình của tam giác ACD)

BM = BN =  a 3 2 (BM, BN lần lượt là đường trung tuyến của tam giác ABC, ABD)

Áp dụng công thức heron:

S = p p - a p - b p - c = a 2 11 6

13 tháng 1 2017

Đáp án C

9 tháng 4 2019

Gọi M; N  lần lượt là trung điểm của AB và B C  suy ra  AN và MC cắt nhau tại G

Dễ thấy mặt phẳng (GCD)  cắt đường thắng AB  tại điểm M.

Suy ra tam giác MCD  là thiết diện của mặt phẳng  (GCD)  và tứ diện.

Tam giác ABD đều, có M  là trung điểm AB  suy ra

Tam giác A BC đều, có 

Chọn B.