K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chúng ta sẽ chia thành 3 khối như sau:

A.A'B'C', B'.ABC và C.A'B'C'

21 tháng 8 2023

tham khảo:

Khám phá 5 trang 79 Toán 11 tập 2 Chân trời

Ba tứ diện A'.ABC, C.A'B'B, C.A'B'C' có cùng chiều cao và diện tích đáy.

NV
4 tháng 5 2021

Kẻ \(CH\perp AB\Rightarrow AB\perp\left(CC'H\right)\)

\(\Rightarrow\widehat{CHC'}\) là góc giữa (C'AB) và (ABC) \(\Rightarrow\widehat{CHC'}=30^0\)

\(\Rightarrow CH=C'H.cos30^0=\dfrac{C'H.\sqrt{3}}{2}\)

\(S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{\sqrt{3}}{2}.\left(\dfrac{1}{2}C'H.AB\right)=\dfrac{\sqrt{3}}{2}S_{C'AB}=6\sqrt{3}\)

17 tháng 10 2019

Đáp án C

Ta có thể tích của khối lăng trụ: V= h.Sđáy= 6.10 = 60 cm3→ Đáp án C

18 tháng 10 2017

ĐÁP ÁN: D

NV
5 tháng 4 2022

Đặt \(x=AA'\)

Ta có: \(\overrightarrow{AB'}=\overrightarrow{AA'}+\overrightarrow{AB}\) ; \(\overrightarrow{BD'}=\overrightarrow{BB'}+\overrightarrow{BD}=\overrightarrow{BB'}+\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{AB'}.\overrightarrow{BD'}=\left(\overrightarrow{AA'}+\overrightarrow{AB}\right)\left(\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(=AA'^2+\overrightarrow{AA'}\left(-\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{AB}.\overrightarrow{AA'}-AB^2+\overrightarrow{AB}.\overrightarrow{BC}\)

\(=x^2-a^2+AB.BC.cos120^0\)

\(=x^2-a^2-\dfrac{a^2}{2}=x^2-\dfrac{3a^2}{2}=0\)

\(\Rightarrow x=\dfrac{a\sqrt{6}}{2}\)

\(V=\dfrac{a\sqrt{6}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{2}}{4}\)

NV
5 tháng 4 2022

undefined

24 tháng 3 2018

20 tháng 7 2018

16 tháng 8 2019

Đáp án là C

Ta có thể tích lăng trụ là 

NV
27 tháng 1 2021

\(\widehat{A'BA}=60^0\Rightarrow AA'=AB.tan60^0=a\sqrt{3}\)

(Lại 1 bài mà sử dụng tọa độ hóa sẽ cho kết quả cực kì nhanh chóng).

Lớp 11 thì chắc phải dựng hình:

Trong mp (A'B'C'), qua C' kẻ đường thẳng song song A'B', qua B' kẻ đường thẳng song song A'C', hai đường thẳng này cắt nhau tại D'

\(\Rightarrow AC'||BD'\) (do tứ giác ABD'C' là hình bình hành)

\(\Rightarrow d\left(AC';A'B\right)=d\left(AC';\left(A'BD'\right)\right)=d\left(C';\left(A'BD'\right)\right)\)

Gọi giao điểm của A'D' và B'D' là O \(\Rightarrow OB'=OC'\) theo t/c 2 đường chéo hbh

\(\Rightarrow d\left(C';\left(A'BD'\right)\right)=d\left(B';\left(A'BD'\right)\right)\)

Quy được về 1 bài tính khoảng cách cơ bản: tứ diện B.A'B'D' có \(BB'\perp\left(A'B'D'\right)\) , tìm k/c từ B' đến mp (A'BD')

Lần lượt kẻ B'H vuông góc A'D' và B'K vuông góc BH thì B'K là k/c cần tìm

Bạn tự tính toán nốt nhé