Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ $SH$ vuông góc với $SB$
Vì $SA$ vuông góc với đáy nên \(SA\perp BC\). Tam giác $ABC$ vuông tại $B$ nên \(AB\perp BC\)
Ta có:
\(\left\{\begin{matrix}
SA\perp BC\\
AB\perp BC\end{matrix}\right.\Rightarrow (SAB)\perp BC\)
Mà \(AH\subset (SAB)\Rightarrow AH\perp BC\)
Kết hợp với \(AH\perp SB\Rightarrow AH\perp (SBC)\)
Do đó \(d(A,(SBC))=AH\)
Xét tam giác $SAB$ vuông tại $A$ có đường cao $AH$ thì theo hệ thức lượng trong tam giác vuông ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{SA^2}=\frac{1}{a^2}+\frac{1}{a^2}\)
\(\Rightarrow AH=\frac{a\sqrt{2}}{2}\)
Vậy \(d(A,(SBC))=\frac{a\sqrt{2}}{2}\)
Bạn tự vẽ hình
Gọi N là trung điểm BC \(\Rightarrow AN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều ABC cạnh a)
\(SN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều SBC cạnh a)
\(\Rightarrow AN=SN=SA=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAN\) đều
\(\left\{{}\begin{matrix}BC\perp SN\\BC\perp AN\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAN\right)\)
\(\left(P\right)\perp BC\Rightarrow\left(P\right)//\left(SAN\right)\)
Từ M kẻ \(MD//AN\left(D\in BC\right)\), từ M kẻ \(ME//SA\left(E\in SB\right)\)
\(\Rightarrow\Delta MDE\) là thiết diện của (P) và chóp
Theo đt Talet: \(\frac{MD}{AN}=\frac{ME}{SA}=\frac{DE}{SN}=\frac{BM}{AB}\)
\(\Rightarrow MD=ME=DE=\frac{AN.BM}{AB}=\frac{\frac{a\sqrt{3}}{2}\left(a-b\right)}{a}=\frac{\sqrt{3}}{2}\left(a-b\right)\)
\(\Rightarrow\Delta MDE\) là tam giác đều cạnh \(\frac{\sqrt{3}}{2}\left(a-b\right)\)
Theo công thức diện tích tam giác đều:
\(S_{MDE}=\frac{\left(\frac{\sqrt{3}}{2}\left(a-b\right)\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{16}\left(a-b\right)^2\)
\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)
b/ Gọi N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAB
\(\Rightarrow MN//SB\Rightarrow SB//\left(CMN\right)\)
\(\Rightarrow d\left(SB;CM\right)=d\left(SB;\left(CMN\right)\right)=d\left(S;\left(CMN\right)\right)\)
Mặt khác SA cắt \(\left(CMN\right)\) tại N
\(NS=NA=\frac{1}{2}SA=a\Rightarrow d\left(S;\left(CMN\right)\right)=d\left(A;\left(CMN\right)\right)\)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
Kẻ \(AH\perp CM\Rightarrow\Delta MHA\sim\Delta MBC\) (tam giác vuông có 1 góc đối đỉnh)
\(\Rightarrow\frac{AH}{BC}=\frac{AM}{CM}\Rightarrow AH=\frac{BC.AM}{CM}=\frac{a\sqrt{5}}{5}\)
Từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(CMN\right)\right)\)
\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{AN.AH}{\sqrt{AN^2+AH^2}}=\frac{a\sqrt{6}}{6}\)