K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Đáp án D

Số cạnh đáy của hình chóp đã cho là 2018/2 =1009, suy ra số mặt bên của hình chóp  1009.

13 tháng 11 2019

Chọn B

24 tháng 12 2018

Đáp án B

NV
22 tháng 11 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow\widehat{SMO}=60^0\)

\(\Rightarrow SO=OM.tan60^0=\dfrac{a\sqrt{3}}{2}\)

Trong mp (ABCD), kéo dài AM và CD cắt nhau tại E

Trong mp (SCD), nối NE cắt SC tại F

Theo định lý talet: \(\dfrac{EC}{ED}=\dfrac{MC}{AD}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}EC=a\\ED=2a\end{matrix}\right.\)

Áp dụng định lý Menelaus cho tam giác SCD:

\(\dfrac{FS}{FC}.\dfrac{CE}{ED}.\dfrac{DN}{NS}=1\Leftrightarrow\dfrac{FS}{FC}.\dfrac{1}{2}.1=1\Rightarrow\dfrac{FS}{FC}=2\)

\(\Rightarrow\dfrac{FC}{SC}=\dfrac{1}{3}\Rightarrow d\left(F;\left(ABCD\right)\right)=\dfrac{1}{3}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{3}SO=\dfrac{a\sqrt{3}}{6}\)

\(ND=\dfrac{1}{2}SD\Rightarrow d\left(N;\left(ABCD\right)\right)=\dfrac{1}{2}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{2}SO=\dfrac{a\sqrt{3}}{4}\)

\(\Rightarrow V_{NADMFC}=V_{NADE}-V_{FMCE}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{4}.\dfrac{1}{2}a.2a-\dfrac{1}{3}.\dfrac{a\sqrt{3}}{6}.\dfrac{1}{2}.a.\dfrac{a}{2}=\dfrac{5\sqrt{3}}{72}a^2\)

\(\Rightarrow V_1=V_{SABCD}-V_{NADMFC}=....\)

NV
22 tháng 11 2021

undefined

31 tháng 5 2019

Đáp án A

Khối chóp đã cho có 3 mặt phẳng đối xứng

 

9 tháng 10 2018

Chọn D

Mặt phẳng đối xứng của khối chóp trên tạo bởi cạnh bên và trung điểm của cạnh đáy đối diện.

Vậy khối chóp trên có 3 mặt phẳng đối xứng.

8 tháng 12 2019

Chọn B.

Gọi M là trung điểm của cạnh BC và H là trọng tâm của tam giác ABC.

Do S.ABC là hình chóp tam giác đều nên  SH ⊥ (ABC)

=> (SA,(ABC))=(SA,AH)= S A H ^ = 45 0

Theo giả thiết tam giác ABC là tam giác đều cạnh a nên  A H = 2 3 A M = a 3 3  

Tam giác SHM vuông cân tại H nên   A H = S H = a 3 3

Thể tích khối chóp S.ABC là 

V = 1 3 . 1 2 . B C . A M . S H = 1 6 . a 3 2 . a 3 3 = a 3 12

25 tháng 11 2016

Gọi \(I\) là tâm của đáy \(ABCD\) (giao điểm của \(AC\)\(BD\))

a) Vì đây là hính chóp đều nên có ngay \(SI\) là đường cao kẻ từ S

\(SI=\sqrt{SA^2-AI^2}=\sqrt{SA^2-\frac{AB^2}{2}}=a\sqrt{2}\)

\(V_{S.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{4a^3\sqrt{2}}{3}\)

b) Thấy ngay \(IA=IB=IC=ID=IS=a\sqrt{2}\)

suy ra tâm mc ngoại tiếp là \(I\)\(R=a\sqrt{2}\)

c) bạn dùng công thức sau để tính bán kính mặt cầu nội tiếp

\(r=\frac{3V_{S.ABCD}}{S_{ABCD}+4S_{SAB}}=\frac{\frac{4a^3\sqrt{2}}{3}}{4a^2+4.\frac{a^2\sqrt{3}}{2}}=\frac{4\sqrt{2}-2\sqrt{6}}{3}.a\)

 

13 tháng 3 2019

Chọn A.

Ta có: Góc giữa cạnh bên và mặt phẳng đáy là  S A H ^   =   60 °

22 tháng 2 2018