Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay b + c = a vào ta có :
\(\frac{a}{b}.\frac{a}{c}=\frac{b+c}{b}.\frac{b+c}{c}=\frac{\left(b+c\right)^2}{bc}\) (1)
và \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a.\left(b+c\right)}{bc}=\frac{\left(b+c\right).\left(b+c\right)}{bc}=\frac{\left(b+c\right)^2}{bc}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Có : b+c=a
Thay vào , ta được:
a/b=a/c=> b+c/b.b+c/c=(b+c)2/bc và a/b+a/c=ac+ad/bc=a(b+c)/bc=(bc+c)(b+c)/bc=(b+c)2/bc
Từ trên ta có thể suy ra rằng :
a/b.a/c=a/b+a/c
Đặt \(A=\left|x-2\right|+\left|x-3\right|\)
Ta có:
\(\left|x-3\right|=\left|3-x\right|\)
\(\Rightarrow A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Do đó 1 chính là giá trị nhỏ nhất của A
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Ta có bảng xét dấu sau:
x x-2 3-x (x-2)(3-x) 2 3 0 0 + + + + + 0 0 _ _ _ _
\(\Rightarrow2\le\)\(x\le\)\(3\)
\(\Rightarrow x\in\left\{2;3\right\}\)
Vậy \(x\in\left\{2;3\right\}\)
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM
n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)
nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3
nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ
câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)
Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z
nên ta chỉ cần tìm giá trị của n để A chia hết cho5
để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5
nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)
mà 1<n<10 nên n=5(n là số nguyên dương)
vậy giá trị của n thỏa mãn đề bài là 5
15.
Ta có \(a+b+c+ab+bc+ac=6\)
Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)
=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)
=> \(a+b+c\ge3\)
\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)
Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)
Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)
Tóm lại bđt được chứng minh
Dấu "=": tại a=b=c
- Tỉ số của :
-0,75 và 1,25 là -0,75 : 1,25 = -0,75/1,25
-2/1/3 và -3,15 là -2/1/3 :-3,15
-4/3/4 và 7/3 là -4/3/4 : 7/3
- - năm tỉ số là 1/2 , 2/3 , 3/4 , 4/5 , 5/6
- - giống : đều được viết dưới dạng a/b
- -Khác : Khi nói đến tỉ số a/b thì a và b có thể là các số nguyên,phân số,hỗn số,...Còn khi nói phân số a/b thì cả a và b đều là các số nguyên
a: \(F\left(x\right)=x^4+6x^3+2x^2+x-7\)
\(G\left(x\right)=-4x^4-6x^3+2x^2-x+6\)
b: h(x)=f(x)+g(x)
\(=x^4+6x^3+2x^2+x-7-4x^4-6x^3+2x^2-x+6\)
\(=-3x^4+4x^2-1\)
c: Đặt h(x)=0
\(\Leftrightarrow3x^4-4x^2+1=0\)
\(\Leftrightarrow\left(3x^2-1\right)\left(x^2-1\right)=0\)
hay \(x\in\left\{1;-1;\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
Xét 3 2 k + 1 C 2 n 2 k = 3 2 k + 1 C 2 n + 1 2 k + 1 và - 1 2 k + 1 C 2 n 2 k = - 1 2 k + 1 C 2 n + 1 2 k + 1
Điều kiện bài toán tương đương với:
3 2 n + 1 C 2 k 2 n + C 2 n + 1 3 - 1 2 n + 1 C 2 n + 1 2 + C 2 n + 1 4 = 10923 5 ⇔ 2 2 n + 1 . 2 2 n + 1 2 - 1 2 n + 1 2 2 n + 1 2 - C 2 n + 1 0 = 10923 5
Giải phương trình này hết sức đơn giản ta tìm được n = 7. Ta có:
a b 3 + b 2 b 2 3 a a 2 3 21 ∑ k = 0 21 C 21 k a k 3 b k 3 b 8 ( 21 - k ) 3 a - 5 21 - k 3
Hệ số của số hạng có tỉ số lũy thừa của a và b bằng - 1 2 nên
k 3 - 35 + 5 k 35 - k 3 + 56 - 8 k 3 = - 1 2 ⇒ k = 14
Vậy hệ số của bài toán thỏa mãn yêu cầu bài toán là C 21 14 = 116280
Đáp án D