Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Sử dụng công thức khai triển của nhị thức Newton:
Theo bài ra ta có:
Đáp án là A
• Xét khai triển:
x + 1 2 n + 1 = C 2 n + 1 0 x 2 n + 1 + C 2 n + 1 1 x 2 n + ... + C 2 n + 1 2 n + 1 .
Cho x = 1 , ta được: 2 2 n + 1 = C 2 n + 1 0 + C 2 n + 1 1 + ... + C 2 n + 1 2 n + 1 . (1)
Cho x = − 1 , ta được: 0 = − C 2 n + 1 0 + C 2 n + 1 1 − ... + C 2 n + 1 2 n + 1 . (2)
Cộng (1) và (2) vế theo vế, ta được:
2 2 n + 1 = 2 C 2 n + 1 1 + C 2 n + 1 3 + ... + C 2 n + 1 2 n + 1 ⇔ 2 2 n + 1 = 2.1024 ⇔ n = 5
• Xét: 2 − 3 x 10 = ∑ 0 10 C 10 k 2 10 − k . − 3 x k = ∑ 0 10 − 3 k .2 10 − k . C 10 k . x k
Hệ số của x 7 là: − 3 7 .2 3 . C 10 7 = − 2099520.
Đáp án A
Vậy n = 10.
Ta có số hạng tổng quát trong khai triển trên là
Vì a là hệ số của số hạng không chứa x trong khai triển nên ta cho
Chọn B