![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
\(P=\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
Áp dụng BĐT Cô-si ta có :
\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)
\(\Rightarrow P\ge10-6=4\)
Vậy \(MIN_P=4\) . Dấu \("="\) xảy ra khi \(x=4\)
Bài 2 : Đặt \(\sqrt{x}=a\)
\(M=\frac{2}{a^2+a+1}\Leftrightarrow Ma^2+Ma+M-2=0\)
\(\Delta=M^2-4M\left(M-2\right)=-3M^2+8M\)
Để phương trình có hai nghiệm phân biệt :
\(\Rightarrow-3M\left(M-\frac{8}{3}\right)\ge0\Rightarrow0\le M\le\frac{8}{3}\)
Vậy GTLN của M là \(-\frac{8}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt a - 1 = x > 0; b - 1 = y > 0
\(A=\frac{\left(x+1\right)^2}{x}+\frac{\left(y+1\right)^2}{y}\\ A=\frac{x^2+2x+1}{x}+\frac{y^2+2y+1}{y}\\ A=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+4\)
Với x > 0; y > 0, theo BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}\Rightarrow x+\frac{1}{x}\ge2\)
\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}\Rightarrow y+\frac{1}{y}\ge2\)
\(\Rightarrow A\ge8\)
Dấu "=" xảy ra khi và chỉ khi x = y = 1 => a = b = 2
Vậy...
giải hộ với mn ơi