K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

giả sử \(H\left(-1\right)=0\)

\(-4.\left(-1\right)^3+9.\left(-1\right)^2-12.\left(-1\right)+9=0\)

\(4+9+12+9=0\)

\(34=0\left(vl\right)\)

vậy x= - 1 ko phải nghiệm của M(x)

6 tháng 5 2022

\(\text{Thay x=-1 vào biểu thức H(x),ta được:}\)

\(H\left(x\right)=\left(-4\right).\left(-1\right)^3+9.\left(-1\right)^2-12.\left(-1\right)+9\)

\(H\left(x\right)=4+9-\left(-12\right)+9\)

\(H\left(x\right)=13-\left(-12\right)+9\)

\(H\left(x\right)=25+9=34\)

\(\text{Vậy x=-1 không phải là nghiệm của đa thức H(x)}\)

6 tháng 7 2017

Ta có : C(x) = P(x) + H(x)

=> C(x) = 4x2 - 1 + x4 + 3 

=> C(x) = x4 + 4x2 + 2 

Mà x4 \(\ge0\forall x\)

     4x2 \(\ge0\forall x\)

Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)

=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)

Vậy đa thức C(x) vô nhiệm

17 tháng 6 2020

\(P\left(x\right)=4x^3-\frac{3}{2}x^2-x+10\)

\(P\left(-2\right)=4\cdot\left(-2\right)^3-\frac{3}{2}\cdot\left(-2\right)^2-\left(-2\right)+10\)

\(=4\cdot\left(-8\right)-6+2+10\)

\(=-26\)

* H(x) + Q(x) = P(x)

<=> H(x) = P(x) - Q(x)

H(x) = \(4x^3-\frac{3}{2}x^2-x+10-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)

        = \(4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

        = \(\frac{1}{2}x^2-\frac{1}{2}x\)

* H(x) luôn nguyên với mọi x 

Chỗ này bạn xem lại đề 

a, Ta có : \(P\left(-2\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)

\(=-32.\left(-6\right)+2+10=192+2+10=204\)

b, \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)

\(H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(H\left(x\right)=4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

\(=\frac{1}{2}x^2-\frac{1}{2}x\)

7 tháng 5 2016

1)

f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.

h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.

g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.

k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9  hoặc 9.

m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.

n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.

A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.

2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)

7 tháng 5 2016

3x - 6 = 0

3x      = 6

  x      = 6 : 3

  x      = 2

Vậy x = 2 là nghiệm của đa thức f(x)

-5x + 30 = 0

-5x         = -30

   x         = -30 : (-5)

   x         = 6

Vậy x = 6 là nghiệm của đa thức trên

(x - 3)(16 - 4x) = 0

  • x - 3 = 0

         x      = 3

  • 16 - 4x = 0

                 4x = 16

                   x = 16 : 4

                   x = 4

Vậy x = 3 và x = 4 là nghiệm của đa thức trên

x^2 - 81 = 0

x^2         = 81

x^2          = \(\left(\pm9\right)^2\)

x              = \(\pm9\)

Vậy x = 9 và x = -9 là nghiệm của đa thức trên

x^2 + 7x - 8 = 0

x^2 - x + 8x - 8 = 0

x(x - 1) + 8(x - 1) = 0 

(x + 8)(x - 1) = 0 

  • x + 8 = 0

         x       = -8

  • x - 1 = 0

         x       = 1

Vậy x = -8 và x = 1 là nghiệm của đa thức trên

5x^2 + 9x + 4 = 0

5x^2 + 5x + 4x + 4 = 0

5x(x + 1) + 4(x + 1) = 0

(5x + 4)(x + 1) = 0

  • 5x + 4 = 0

         5x       = -4

           x       = -4/5

  • x + 1 = 0

         x       = -1

Vậy x = -4/5 và x = -1 là nghiệ của đa thức trên

Chúc bạn học tốtok

 

 

   

 

6 tháng 6 2018

Giải:

a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)

\(\Leftrightarrow h\left(x\right)=x+3x^2\)

b) Để đa thức h(x) có nghiệm

\(\Leftrightarrow h\left(x\right)=0\)

\(\Leftrightarrow x+3x^2=0\)

\(\Leftrightarrow x\left(1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự