K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2015

a,Xét tam giác HBE(H=90 độ) và tam giác ABE(A=90 độ) có:

BE chung

góc HBE= góc ABE

=> tam giác HBE=tam giác ABE( c.huyền .góc nhọn) (đpcm)

b,Vì BE là tia phân giác của góc xBy

Suy ra EB=EA (theo t/c tia phân giác)

AH cắt BE tại K

Xét tam giác EHK và tam giác EAK

Có:

EH=EA(cmt)

góc HEK= góc AEK(2 góc tương ứng)

EK chung

=> Tam giác HEK=tam giác AEK(cgc)

=>HK=AK (1)

=> góc HKB= góc BKA=90 độ (2)

Từ (1) và (2) suy ra BE là đường trung trực của AH (đpcm)

c, Xét tam giác EHC(H=90 độ) và tam giác KAE(A=90 độ)

có :

góc CEH= góc KEA ( 2 góc đối đỉnh)

EH=EA

=> tam giác EHC=tam giác KAE

=>AE<EC(cạnh góc vuông nhỏ hơn cạnh huyền)

 

26 tháng 8 2019

vô tcn của PTD/KM ?, https://olm.vn/thanhvien/kimmai123az, toàn câu tl copy, con giẻ rách này ko nên sông nx

Câu hỏi của Không Phaỉ Hoỉ - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của Ngọc Anh Dũng - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath

Câu hỏi của Nguyễn Thu Hiền - Toán lớp 9 - Học toán với OnlineMath

Còn rất rất nhìu nx, ko có t/g

9 tháng 2 2019

Hỏi đáp Toán

a) Ta có: ^BAR+^DAR=^BAD=900 (1)

^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)

Từ (1) và (2) => ^BAR=^DAQ

Xét \(\Delta\)ABR và \(\Delta\)ADQ:

^ABR=^ADQ=900

AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)

^BAR=^DAQ

=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:

AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.

Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)

=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.

b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)

Tương tự: AN vuông góc với PS (4)

Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450

AN là phân giác của ^PAS => ^SAN=450

=> ^MAR+^SAN=^MAN=900 (5)

Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)

c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS

Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H

=> P là trực tâm của tam giác SQR (đpcm).

d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.

Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN

=> CN=AN => N nằm trên đường trung trực của AC (6)

Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM

Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM

=> CM=AM => M nằm trên đường trung trực của AC (7)

Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)

e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường

=> BD là trung trực của AC (9)

Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).

10 tháng 2 2019

thank youkhocroi

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔBCD có

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

c: Xét ΔCBD có

CA,BE là đường trung tuyến

CA cắt BE tại I

Do đó: DI đi qua trung điểm của BC

21 tháng 11 2014

a) ADME là hình chữ nhật có ba góc vuông 

b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE

xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân

c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H

d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC

e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông