K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

a)Vì abcd là hình vuông nên góc abk=adc=90 độ

Tự chứng minh góc ade=90 độ vì kề bù góc adc

Xét tam giác abk và ade có:

+ad=ab(Tính chất 2 cạnh hình vuông)

+Góc abk=ade=90 độ (chứng minh trên)

+bk=de(gt)

=>Tam giác abk=ade(c.g.c)

=>ak=ae

b)Vì tam giác abk=ade (chứng minh trên)=>Góc bak=dae

Ta có:Góc bak+kad=bad=90 độ(abcd là hình vuông)

<=>dae+kad=90 độ(vì góc bak=dae)

=>kae=90 độ(dae+kad=kae)

Mà kaen là hình bình hành(gt)=>kaen là hình chữ nhật

17 tháng 12 2016

bài này mk ko hỉu đề

17 tháng 12 2016

gianroi

17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

24 tháng 6 2016

HÌnh bạn tự vẽ nha.

1/Theo định lí đường tb của hình thang thì:

CK=\(\frac{AB+EM}{2}=\frac{10+14}{2}=12\)

2/a/Ta có:TỨ giác AHMK có \(\hept{\begin{cases}gócA=90^o\\gócH=90^o\\gócK=90^o\end{cases}}\)

MÀ AHM+HMK+MKA+KAH=3600 \(\Rightarrow\) HMK=90o

\(\Rightarrow\)Tứ Giác AHMK là HÌnh Chữ Nhật

b/c/d/cm đó dễ mà bạn tự làm đi.

12 tháng 3 2020

A B C K E M y x D

a, xét tứ giác ACBM có: BM // AC (gt) và AM // BC (gt)

=> ACBM là hình bình hành (đn)

b, BE // AD (gt) 

BD _|_ AD (gt)

=> BE _|_ AD  (đl)

=> ^EBD = 90 = ^BDA = ^AEB 

=> ADBE là hình chữ nhật (dh)

c, Tam giác ABC cân tại B (gt) ; BD là đường cao (gt)

=> BD là trung tuyến của tam giác ABC (đl)

=> D là trung điểm của AC (Đn)

D là trung điểm của BK do B đối xứng với K qua D (Gt)

=> BAKC là hình bình hành (dh)

mà BD _|_ AC (Gt)

=> BAKC là hình thoi (dh)

d, có BAKC là hình thoi (câu c)

=> AK // BC (tc)

AM // BC (gt)              

=> A; M; K thẳng hàng (tiên đề Ơclit)            (1)

AK = BC do BAKC là hình thoi  (câu c)

AM = BC do ACBM là hình bình hành (câu a) 

=> AM = MK         và (1)

=> A là trung điểm của KM (đn)

=> M đối xứng với K qua A (đn)

e, BMKC là hình thang (KM // BC)

để BMKC là hình thang cân 

<=> ^BMK = ^MKC (dh)

^BMK =  ^BCA do BMAC là hình bình hành (câu a)

^AKC = ^CBK do AKCB là hình thoi (câu c)

<=> ^ABC = ^ACB 

mà tam giác ABC cân tại B (Gt)

<=> tam giác ABC đều