K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
5 tháng 7 2017
Giao điểm với trục tung B(0 ;-1). Ta có
Hệ số góc của tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung bằng k = 2.
Chọn B
CM
22 tháng 3 2019
Ta có y ' = 3 x 2 - 4 x + 2
Do tiếp tuyến của (C) vuông góc với đường thẳng y = -x + 2016 nên hệ số góc của tiếp tuyến là k = 1
Chọn A
CM
23 tháng 6 2018
Gọi d là tiếp tuyến của đồ thị hàm số đã cho.
Vì A ∈ d nên phương trình của d có dạng: y= kx+2
Vì d tiếp xúc với đồ thị (C) nên hệ
có nghiệm
Thay (2) vào (1) ta suy ra được
Chứng tỏ từ A có thể kẻ được 3 tiếp tuyến đến đồ thị (C)
Chọn B.
Lời giải:
Giả sử tiếp điểm có hoành độ $x_0$. Phương tình tiếp tuyến tại tiếp điểm là:
\(y=f'(x_0)(x-x_0)+f(x_0)=\frac{-x}{(x_0-1)^2}+\frac{2x_0^2-2x_0+1}{(x_0-1)^2}\) (\(\Delta\))
Khoảng cách từ \(\Delta\) đến \(I(1,2)\) là :
\(d=\frac{\left | \frac{-1}{(x_0-1)^2}-2+\frac{2x_0^2-2x_0+1}{(x_0-1)^2} \right |}{\sqrt{\frac{1}{(x_0-1)^4}+1}}=\sqrt{2}\Rightarrow x_0\in\left \{0;2 \right \}\)
Do đó có 2 PTTT là:\(\left\{\begin{matrix}y=-x+1\\ y=-x+5\end{matrix}\right.\)