Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)
\(\Leftrightarrow m^2-4m-3=0\)
\(\Leftrightarrow...\)
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)
a) \(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)
+) Xét \(m=1\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\) ( loại )
+) Xét \(m\ne1\):
\(\left\{{}\begin{matrix}x=\frac{24-12y}{m-1}\\\frac{3\cdot\left(24-12y\right)}{m-1}+\left(m-1\right)y=12\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(24-12y\right)+\left(m-1\right)^2\cdot y=12\left(m-1\right)\)
\(\Leftrightarrow y\left(m^2-2m-35\right)=12m-84\)
\(\Leftrightarrow y\left(m-7\right)\left(m+5\right)-12\left(m-7\right)=0\)
\(\Leftrightarrow\left(m-7\right)\cdot\left[y\left(m+5\right)-12\right]=0\)
Xét \(m=7\Leftrightarrow x+2y=4\) ( loại vì có vô số nghiệm thỏa mãn )
Xét \(m\ne7\Leftrightarrow y\left(m+5\right)-12=0\Leftrightarrow y=\frac{12}{m+5}\) ( \(m\ne-5\) )
Khi đó \(x=\frac{24-12\cdot\frac{12}{m+5}}{m-1}=\frac{24}{m+5}\)
\(x+y=\frac{12+24}{m+5}=-1\)
\(\Leftrightarrow\frac{36}{m+5}=-1\Leftrightarrow m=-41\) ( thỏa mãn )
Vậy...
b) Hpt có nghiệm duy nhất nguyên \(\Leftrightarrow\left\{{}\begin{matrix}\frac{12}{m+5}\in Z\\\frac{24}{m+5}\in Z\end{matrix}\right.\)
Mà \(24⋮12\Leftrightarrow\frac{12}{m+5}\in Z\) \(\Leftrightarrow\left(m+5\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Đến đây tự tìm m rồi thử lại nhé.
\(\)
Lời giải:
$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):
$m(2-my)-2y=1$
$\Leftrightarrow 2m-y(m^2+2)=1$
$\Leftrightarrow y=\frac{2m-1}{m^2+2}$
$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$
Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$
Để $x<0; y>0$
$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$
$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)
$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$ (vô lý)
Do đó không tồn tại $m$ thỏa mãn đề.