\(\hept{\begin{cases}x+y+xy=m+1\\x^2y+xy^2=m\end{cases}}\)

a, Giải H...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

súc vật tự đăng tự trả lời

6 tháng 1 2019

dùng viét

3 tháng 5 2020

khong biet

13 tháng 2 2018

b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)

từ \(\left(2\right)\) ta có: \(y=2m-mx\)  \(\left(3\right)\)

thay (3) vào (1) ta được  \(x+m\left(2m-mx\right)=m+1\)

\(\Leftrightarrow x+2m^2-m^2x=m+1\)

\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)

\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)

\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\)  \(\left(4\right)\)

để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất  

\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

từ (4) ta có  \(x=\frac{m^2-1}{m^2-1}=1\)

từ (3) ta có: \(y=2m-m\)

\(y=m\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)

theo bài ra  \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

\(\Leftrightarrow m\ge1\)

vậy....

13 tháng 2 2018

a) khi m = 2 hpt có dạng 

\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)

vậy....

4 tháng 6 2021

TH1 : Thay m = 0 vào hệ phương trình, hệ phương trình có dạng 

\(\hept{\begin{cases}2x+y=2\\x+2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y=2\\2x+4y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}-3y=0\\2x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\2x+y=2\end{cases}}}\)

Thay y = 0 vào phương trình 2 ta được : \(\left(2\right)\Rightarrow2x=0\Leftrightarrow x=0\)

Vậy với m = 0 hệ phương trình có một nghiệm ( x ; y ) = ( 0 ; 0 )

tương tự 3 TH còn lại nhé

10 tháng 3 2021

Ta có

   \(\hept{\begin{cases}x+y=3m-2\\x-2y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\3y=3m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\)

          Vậy hpt có nghiệm \(\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\)  ( 1 )

  Thay ( 1 ) vào x2 - 2y + 2 = 0 ta được

         \(\left(2m-2\right)^2-2m+2=0\)

      \(\Leftrightarrow\left(2m-2\right)\left(2m-2\right)-\left(2m-2\right)=0\)

      \(\Leftrightarrow\left(2m-2\right)\left(2m-3\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}2m-2=0\\2m-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{3}{2}\end{cases}}\)

 Vậy ..................................