\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x+y=m^2-3m\end{matrix}\right.\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

1)

\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)

trừ 2 vế của pt cho nhau ta tìm được

\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)

để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

24 tháng 1 2018

Bài 1:

Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)

Bài 2 :

Để hpt đã cho có vô số nghiệm thì m = 1

NV
27 tháng 4 2020

Câu 3:

\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)

Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)

Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)

\(2x+y+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow26m-35=3m^2-12\)

\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)

Câu 4:

\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)

- Với \(m=-2\) hệ vô nghiệm

- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)

- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)

NV
27 tháng 4 2020

Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)

Câu 2:

Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)

13 tháng 5 2018

định lười nhưng mà mới học, xử luôn cho nhớ

* hpt \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Rightarrow7x=7m\Leftrightarrow x=m\)

* hpt \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)

\(\Rightarrow7y=7m+7\Leftrightarrow y=m+1\)

* \(x^2+y^2=10\Leftrightarrow m^2+\left(m+1\right)^2=10\)

(tự làm tiếp nhé)

20 tháng 5 2018

Ôn tập hệ hai phương trình bậc nhất hai ẩn

23 tháng 2 2020

- Ta có hệ phương trình :\(\left\{{}\begin{matrix}3x-y=2m-1\left(I\right)\\x+2y=3m+2\left(II\right)\end{matrix}\right.\)

- Từ ( I ) ta có phương trình : \(3x-y=2m-1\)

=> \(x=\frac{2m-1+y}{3}\) ( III )

- Thay \(x=\frac{2m-1+y}{3}\) vào phương trình ( II ) ta được :

\(\frac{2m-1+y}{3}+2y=3m+2\)

=> \(\frac{2m-1+y}{3}+\frac{6y}{2}=\frac{9m}{3}+\frac{6}{3}\)

=> \(2m-1+y+6y=9m+6\)

=> \(y+6y=9m+6+1-2m\)

=> \(7y=7m+7\)

=> \(y=\frac{7m+7}{7}=\frac{7\left(m+1\right)}{7}=m+1\)

- Thay \(y=m+1\) vào phương trình ( III ) ta được :

\(x=\frac{2m-1+m+1}{3}\)

=> \(x=\frac{3m}{3}=m\)

- Ta có : \(x^2+y^2=5\)

Thay \(x=m,y=m+1\) vào phương trình trên ta được :

\(m^2+\left(m+1\right)^2=5\)

=> \(m^2+m^2+2m+1=5\)

=> \(2m^2+2m-4=0\)

=> \(m^2+m-2=0\)

=> \(m^2+m-2=0\)

=> \(m^2+2m-m-2=0\)

=> \(m\left(m-1\right)+2\left(m-1\right)=0\)

=> \(\left(m+2\right)\left(m-1\right)=0\)

=> \(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m=-2\\m=1\end{matrix}\right.\)

Vậy m = -2, m = 1 thỏa mãn điều kiện trên .