K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) *)Để hệ đã cho vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)

\(\Rightarrow\hept{\begin{cases}\frac{m+1}{5}=\frac{3}{-2}\\\frac{m+1}{5}\ne\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-2m-1=15\\3m+3\ne25\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{-17}{2}\\m\ne\frac{22}{3}\end{cases}}}\)

*) Để hệ có nghiệm duy nhất 

\(\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\Rightarrow\frac{m+1}{5}\ne\frac{3}{-2}\)

\(\Leftrightarrow-2m-2\ne15\)

\(\Leftrightarrow m\ne\frac{-17}{2}\)

b) Để hpt có nghiệm duy nhất \(\hept{\begin{cases}m\ne\frac{-17}{2}\\x+y=5\end{cases}}\)

Thay x=5-y vào hpt ta có \(\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\5\left(5-y\right)-2y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\25-7y=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{44}{13}\\y=\frac{22}{7}\end{cases}}}\)

Vậy \(m=\frac{44}{13}\)thỏa mãn điều kiện

8 tháng 3 2020

\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)

\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)

<=> 5+3m=8 <=> m=1

\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)

Vì \(\dfrac{2}{3}\ne\dfrac{-1}{2}\)

nên hệ luôn có nghiệm duy nhất 

\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y+3x-2y=2m+5\\2x+y=m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{7}m+\dfrac{5}{7}\\y=m-2\left(\dfrac{2}{7}m+\dfrac{5}{7}\right)=\dfrac{3}{7}m-\dfrac{10}{7}\end{matrix}\right.\)

Vậy: \(M\left(\dfrac{2}{7}m+\dfrac{5}{7};\dfrac{3}{7}m-\dfrac{10}{7}\right)\)

Để M nằm hoàn toàn phía bên trái đường thẳng \(x=\sqrt{3}\) thì \(\dfrac{2}{7}m+\dfrac{5}{7}< \sqrt{3}\)

=>\(2m+5< 3\sqrt{7}\)

=>\(2m< 3\sqrt{7}-5\)

=>\(m< \dfrac{3\sqrt{7}-5}{2}\)

8 tháng 3 2020

1) Cho hệ phương trình:

{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)

a) Với m=1 ta có hệ phương trình:

{x+y=52x−y=−2{x+y=52x−y=−2

Cộng vế với vế ta được:

3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4

Vậy với  m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4

b) Nghiệm (x0,y0)(x0,y0) của  (I) thỏa mãn x0+y0=1x0+y0=1

nên ta có hệ phương trình:

⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)

Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43

Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11

Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.

2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my

Thay vào phương trình mx−2y=1mx−2y=1 ta được:

m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2

⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2

x=m+4m2+2x=m+4m2+2

Do m2+2>0m2+2>0 ∀m∀m

⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12

Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0