K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

A B C D O M

a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A

b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)

=> tam giác DCO đồng dạng với tam giác DBA

=>  DC/DB = DO/DA

=> DC.DA = DO.DB (đpcm)

c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)

Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM

Theo Viet ta có: DA/DM = AB/MO

=> AM/DM + 1 = AB/OM

=> AB/OM - AM/DM = 1    (*)

Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)

=> OM = AM

(*) trở thành: AB/AM - AM/DM = 1 (đpcm)

2 tháng 9 2017

2). Gọi PQ giao BC tại D, AQ giao BR tại E ta có các biến đổi góc sau

E Q D ^ = D Q B ^ − A Q B ^ = P R B ^ − A C B ^ = R B C ^ = E B D ^ .

Vậy tứ giác BEDQ nội tiếp, suy ra  B E Q ^ = B D Q ^ = 90 0 ⇒ B R ⊥ A Q

7 tháng 4 2016

A F D B E M K C

Có 2 tam giác vuông \(\Delta ABE=\Delta ADF\) vì \(AB=AD\) và \(\widehat{BAE}=\widehat{DAF}\) cùng phụ với \(\widehat{DAE}\)

Suy ra tam giác AEF vuông cân và \(ME=MA=MF\Rightarrow AM\perp EF\)

Ta có \(\overrightarrow{MA}=\left(2;-4\right)\), đường thẳng EF đi qua M có phương trình :

\(2\left(x+4\right)-4\left(y-2\right)=0\Leftrightarrow x-2y+8=0\)

Bây giờ tìm tọa độ các điểm E, F thỏa mãn ME=MA=MF. Gọi T(x;y) thuộc đường thẳng EF, thì x=2t-8; y=t, \(t\in R\)

Khi đó \(MT=MA\Leftrightarrow\left(2t-8+4\right)^2+\left(1-2\right)^2=2^2+\left(-4\right)^2=20\)

                            \(\Leftrightarrow5\left(t-2\right)^2=20\Leftrightarrow t\left(t-4\right)=0\Leftrightarrow\)\(\begin{cases}t=0\\t=4\end{cases}\)

Như vậy có 2 điểm \(t_1\left(-8;0\right);t_2\left(0;4\right)\) ( Chính là 2 điểm E và F) thuộc đường thẳng EF mà \(MT_1=MA\)

- Trường hợp \(E\left(-8;0\right);F\left(0;4\right)\). Do F thuộc đường thẳng CD nên đường thẳng CD nhận \(\overrightarrow{KF}=\left(3;4\right)\) làm vec tơ chỉ phương.

Phương trình đường thẳng CD là \(\begin{cases}x=3t\\y=4+4t\end{cases}\)   (\(t\in R\)).

Khi đó \(D\left(3t;4+4t\right)\)

Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{KF}.\overrightarrow{AD}=0\Rightarrow3\left(3t+6\right)+4\left(-2+4t\right)=0\Leftrightarrow t=-\frac{2}{5}\Rightarrow D\left(-\frac{6}{5};\frac{12}{5}\right)\)

- Trường hợp \(F\left(-8;0\right);E\left(0;4\right)\), đường thẳng CD nhận \(\overrightarrow{FK}=\left(5;0\right)\) làm vec tơ chỉ phương 

Phương trình CD : \(\begin{cases}x=-8+5t\\y=0\end{cases}\)   \(\left(t\in R\right)\)

Khi đó \(D\left(-8+5t;0\right)\)

Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{FK}.\overrightarrow{AD}=0\Leftrightarrow5\left(-2+5t\right)=0\Leftrightarrow t=\frac{2}{5}\Rightarrow D\left(-6;0\right)\)

 

6 tháng 10 2017

a

6 tháng 11 2017

 .

3). Theo trên, ta có  B E = C D  mà  C E = C F ⇒ B C = D F .

Ta có CI là đường phân giác góc BCD, nên  I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .

Mà CO là trung trực EF và  I ∈ C O , suy ra IE=IF.

Từ hai đẳng thức trên, suy ra  I B . B E . E I = I D . D F . F I .

23 tháng 1 2018

2). Từ  Δ O B E = Δ O D C ⇒ O E = O C .

Mà CO là đường cao tam giác cân CEF , suy ra OE=OF.

Từ đó  O E = O C = O F , vậy O là tâm đường tròn ngoại tiếp tam giác .