K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

Vì MNPQ là hình vuông

=> Có 4 góc vuông bằng nhau; 4 cạnh bằng nhau

Hình vuông MNPQ có 4 góc vuông bằng nhau nên là hình chữ nhật

Hình vuông MNPQ có 4 cạnh bằng nhau nên là hình thoi

MNPQ là hình vuông

=>MN//PQ và MQ//PN; MN=NP=QP=MQ; góc M=góc N=góc P=góc Q=90 độ

=>MNPQ vừa là hình thoi vừa là hình chữ nhật

20 tháng 7 2023

a)

Xét tam giác ABC có MN//BC

`=>(AM)/MB=(AN)/(NC)` (định lí thales)

`=>(6,5)/x=4/2`

`=>x=3,25`

b)

có QH⊥PH (hình vẽ)

FE⊥PH (hình vẽ)

Suy ra EF//HQ (từ vuông góc đến song song)

Xét tam giác PHQ có EF//HQ (cmt)

`=>(PE)/(PH)=(PF)/(PQ)` (định lí thales)

`=>4/x=5/(5+3,5)`

`=>4/x=5/(8,5)`

`=>x=6,8`

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

a. Do H, K lần lượt là trung điểm cạnh DF, EF 

⇒ HK là đường trung bình của tam giác DEF.

⇒ DE = 2 HK = 2 \(\times\) 3 = 6.

b. Do M là trung điểm cạnh AB mà MN // AC (cùng vuông góc với AB)

⇒ MN là đường trung bình của tam giác ABC.

⇒ N là trung điểm của cạnh BC

⇒ y = NB = NC = 5.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Ta có AD = BD và D ∈ AB nên D là trung điểm của AB;

AE = EC và E ∈ AC nên E là trung điểm của AC.

Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

* Xét tam giác ABD cân tại A (vì AB = AD) ta có:

• \(\widehat {AB{\rm{D}}} = \widehat {A{\rm{D}}B} = {40^o}\)

• \(\widehat A + \widehat {AB{\rm{D}}} + \widehat {A{\rm{D}}B} = {180^o}\)

Suy ra \(\widehat A\)=180°−\(\widehat {AB{\rm{D}}}\)−\(\widehat {A{\rm{D}}B}\)=180°−40°−40°=100°

Ta có \(\widehat {A{\rm{D}}B} + \widehat {B{\rm{D}}C}\)=120° suy ra \(\widehat {B{\rm{D}}C}\)=120°−\(\widehat {A{\rm{D}}B}\)=120°−40°=80°.

* Xét tam giác BCD cân tại C (vì BC = CD) ta có:

• \(\widehat {CB{\rm{D}}} = \widehat {C{\rm{D}}B}\)=80°

• \(\widehat C + \widehat {CB{\rm{D}}} + \widehat {C{\rm{D}}B}\)=180°

Suy ra \(\widehat C\)=180°−\(\widehat {CB{\rm{D}}} - \widehat {C{\rm{D}}B}\)=180°−80°−80°=20°

Ta có: \(\widehat {ABC} = \widehat {AB{\rm{D}}} + \widehat {CB{\rm{D}}}\)=40°+80°=120o

Vậy số đo các góc của tứ giác ABCD là \(\widehat A = {100^o};\widehat {ABC} = {120^o};\widehat C = {20^o}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

Cách 1: Diện tích hình vuông MNPQ là: \({a^2} + ab + ab + {b^2} = {a^2} + 2{\rm{a}}b + {b^2}\)

Cách 2: Độ dài cạnh của hình vuông MNPQ là: \(a + b\)

Diện tích của hình vuông MNPQ là: \(\left( {a + b} \right).\left( {a + b} \right) = {\left( {a + b} \right)^2}\)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Vì ABCD là hình bình hành nên: \(\widehat A = \widehat C;\widehat B = \widehat D\) ta có:

\(\begin{array}{l}\widehat A = \widehat C = {100^o}\\\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\\{100^o} + \widehat B + {100^o} + \widehat B = {360^o}\\2\widehat B + {200^o} = {360^o}\end{array}\)

Suy ra: \(2\widehat B = {360^o} - {200^o} = {160^o}\)

Do đó: \(\widehat B = {80^o}\) suy ra: \(\widehat B = \widehat D = {80^o}\)

Vậy các góc của hình bình hành ABCD là: \(\widehat A = {100^o};\widehat C = {100^o};\widehat B = {80^o};\widehat D = {80^o}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

Biểu thức diện tích của hình chữ nhật ABCD là: \({S_{ABC{\rm{D}}}} = \left( {x + 1} \right)\left( {x + 3} \right)\)

Biểu thức diện tích của hình chữ nhật MNPQ là: \({S_{MNPQ}} = x\left( {x + 1} \right)\)

Tỉ số diện tích của hình chữ nhật ABCD và hình chữ nhật MNPQ là: \(\dfrac{{{S_{ABC{\rm{D}}}}}}{{{S_{MNPQ}}}} = \dfrac{{\left( {x + 1} \right)\left( {x + 3} \right)}}{{x\left( {x + 1} \right)}} = \dfrac{{x + 3}}{x}\)

b) Với x = 5 ta có: \(\dfrac{{{S_{ABC{\rm{D}}}}}}{{{S_{MNPQ}}}} = \dfrac{{5 + 3}}{5} = \dfrac{8}{5}\)

Với x = 2 ta có: \(\dfrac{{{S_{ABC{\rm{D}}}}}}{{{S_{MNPQ}}}} = \dfrac{{2 + 3}}{2} = \dfrac{5}{2}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

* Hình 3.39a)

Tứ giác ABCD có: \(\widehat A = \widehat C;\widehat B = \widehat D \)

Do đó, tứ giác ABCD là hình bình hành.

* Hình 3.39b)

Tứ giác ABCD có: \(\widehat B \ne \widehat D\)  (70°≠75°).

Do đó, tứ giác ABCD không là hình bình hành.

* Hình 3.39c)

Đặt \(\widehat {BC{\rm{x}}} = {80^o}\) (như hình vẽ)

Ta có: \(\widehat D = \widehat {BC{\rm{x}}} = {80^o}\) mà hai góc này ở vị trí đồng vị nên AD // BC.

Tứ giác ABCD có:

• AD // BC (chứng minh trên)

• AD = BC (giả thiết)

Do đó, tứ giác ABCD là hình bình hành.

Vậy tứ giác ABCD trong Hình 3.39a) và 3.39c) là hình bình hành; tứ giác ABCD trong Hình 3.39b) không là hình bình hành.