Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi cạnh hình vuông thứ nhất là x (cm)
"""vì chu vi hình vuông thứ nhất kém chu vi hình vuông thứ hai là 16cm nên ta có:
4x=(chu vi hình vuông thứ 2)-16
=> x= (cạnh hình vuông thứ hai) - 4 (vì chu vi = 4 . cạnh)""""
=> cạnh hình vuông thứ hai thứ x+4
vì hiệu diện tích hai hình vuông này là 64cm vuông nên ta có phương trình:
(x+4)^2 - x^2= 64
=> x^2+8x+16 -x^2=64
=> 8x+16=64
=> 8x=48
=> x=6
vậy diện tích hình vuông thứ nhất là : 6^2=36cm vuông
diện tích hình vuông thứ hai là: (6+4)^2=100cm vuông
nếu bạn hiểu rùi thì không cần ghi phần bạn đã"""......."""" nhé
chúc bạn học tốt
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
a) Xét \(\Delta HAC\)và \(\Delta ABC\)có:
\(\widehat{AHC}=\widehat{BAC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta HAC~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\) \(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
\(\Delta ABC\) có \(AD\)là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)
c) Xét \(\Delta CED\)và \(\Delta CAB\)có:
\(\widehat{CED}=\widehat{CAB}=90^0\)
\(\widehat{ECD}\) chung
suy ra: \(\Delta CED~\Delta CAB\)
\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)
\(\Rightarrow\)\(CE.AB=AC.ED\) (đpcm)
thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs
a) MN là đường trung bình của tam giác HDC nên MN = \(\frac{1}{2}CD\)và \(MN//CD\)
Mà \(AB//CD\)và AB =\(\frac{1}{2}CD\)nên \(AB//MN\)và AB = MN
Suy ra ABMN là hình bình hành
b) Vì \(MN//CD\)và \(AD\perp CD\)nên \(AD\perp MN\)
Suy ra N là trực tâm của tam giác AMD
d) CD = 16 nên AB = 8
Suy ra \(S_{ABCD}=\frac{\left(16+8\right).6}{2}=72\left(cm^2\right)\)
c) \(\widehat{NAB}=\widehat{NMB}\)(hai góc đối)
\(\Rightarrow NBM+NDM=NAB+DAC=90^0=BMD\)
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
Chọn A