Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tính MN:
Xét tam giác ABC ta có:
M là trung điểm AC (gt); N là trung điểm BC (gt)
=>MN là đường trung bình của tam giác ABC
=> MN // BC; MN=BC/2
=>MN= 12/2=6
b) Tính diện tích tam giác ABC:
Xét tam giác ABC vuông tại A ta có:
AB2+AC2=BC2 (định lý Pytagor thuận)
122+AC2=202
144+AC2=400
AC2=400-144=256
AC=16
Diện tích tam giác ABC là:
S tam giác ABC= AB*AC=12*16=192
c) CMR: tứ giác ABCD là hình bình hành:
Xét tứ giác ABCD ta có:
M là trung điểm của AC (gt)
M là trung điểm của BD (gt)
AC cắt BD tại M
=> tứ giác ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
d) CM: tứ giác ABEC là hình chữ nhật:
Ta có :
CD=AB ( ABCD là hình bình hành)
CD=CE (gt)
=>CE=AB
Xét tứ giác ABEC ta có:
AB=CE (cmt)
AB//CE (AB//CD; C thuộc DE)
=>tứ giác ABEC là hình bình hành ( tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau)
mà góc BAC= 900 (tam giác ABC vuông tại A)
=.>hình bình hành ABEC là hình chữ nhật (tứ giác là hình bình hành có một góc vuông)
câu 1
a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ
tương tự góc EAF=90 độ
tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn
b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M
=> MF là T tuyến => Flà tđ cua AC
xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)
tương tự OF // MD (2)
từ (1),(2) => T giác OMDF là hbh (3)
ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)
từ (3),(4) => T giác OMDF la hình thoi
c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ
mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F
áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm
diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông
e) Chứng minh HI, ST, KF đồng quy.
Gọi O là giao điểm của EI và HK.
Xét tứ giác HIKE ta có:
góc IHE = 900 (HI _|_ EB tại H)
góc IKE = 900 (KI _|_ EC tại K)
góc HEK = 900 (tứ giác ABEC là hình chữ nhật)
=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)
=> góc HIK = 900
=> KI _|_ HI tại I
Xét hình chữ nhật HIKE ta có:
2 đường chéo EI và HK cắt nhau tại O (cách vẽ)
=> O là trung điểm của EI và O là trung điểm của HK
Xét tam giác FEI vuông tại F ta có:
FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)
=> FO = 1/2 EI
Mà EI = HK (tứ giác HIKE là hình chữ nhật)
Nên FO = 1/2 Hk
Xét tam giác FHK ta có:
FO là đường trung tuyến (O là trung điểm của HK)
FO = 1/2 HK (cmt)
=> tam giác FHK vuông tại F
=> HF _|_ FK tại F
Xét tam giác SHK ta có:
ST là đường cao (ST _|_ HK tại T)
HI là đường cao (HI _|_ KI tại I)
KF là đường cao (KF _|_ HF tại F)
=> HI, ST, KF đồng quy tại một điểm (đpcm)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a) Xét tứ giác ABED có
AB//ED(gt)
AB=ED
Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)