K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Bài này ở sách nào thế ạ?

đăng đẻ hỏi chứ không phải để tìm sách

11 tháng 7 2018

A B C D F E G

a) * Xét \(\Delta ADF\)\(\Delta ABE\)\(\left\{{}\begin{matrix}AE=AF\\AD=AB\\FAD=EAB\end{matrix}\right.\)

\(\Rightarrow\) \(\Delta ADF=\Delta ABE\left(c.g.c\right)\) \(\Rightarrow ADF=ABE\) . Mà \(ABE=90^0\) \(\Rightarrow ADF=90^0\)

* Có \(ADF+ADC=90^0+90^0=180^0\) \(\Rightarrow\) F , D , C thẳng hàng _ đpcm

b) Xét \(\Delta AFG\) vuông tại A có đường cao AD \(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AG^2}\)

Mà AD=AB ; AF=AE

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AG^2}\) _đpcm

11 tháng 6 2019

Ấn vào

18 tháng 8 2018

Xét tam giác AKD và tam giác ABE ta có:

\(\widehat{ADK}=\widehat{ABE}\left(=90^o\right)\)

\(\widehat{KAD}=\widehat{BAE}\) (cùng phụ \(\widehat{DAF}\)

=> \(\Delta AKD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AK}{AE}=\dfrac{1}{2}\)

\(\Rightarrow AK=\dfrac{1}{2}AE\)

Xét tam giác AKF vuông tại A có đcao AD :

\(\dfrac{1}{AD^2}=\dfrac{1}{AK^2}+\dfrac{1}{AF^2}\) (HTL)

\(\dfrac{1}{\dfrac{1}{4}AB^2}=\dfrac{1}{\dfrac{1}{4}AE^2}+\dfrac{1}{AF^2}\)

\(\dfrac{4}{AB^2}=\dfrac{4}{AE^2}+\dfrac{1}{AF^2}\)

\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Do $ABCD$ là hình thoi nên:

\(\widehat{D_1}=\widehat{B_1}=180^0-\widehat{BAD}=30^0\) (2 góc trong cùng phía )

\(\widehat{F_1}=\widehat{BAE}=30^0\) (so le trong với \(AB\parallel CD\))

Do đó: \(\widehat{D_1}=\widehat{F_1}\Rightarrow \triangle ADF\) cân tại $A$, suy ra $AF=AD=a(1)$

Kẻ $AH$ vuông góc với $BC$

Ta có: \(\frac{AH}{AB}=\sin \widehat{ABH}=\sin \widehat{B_1}=\sin 30^0=\frac{1}{2}\)

\(\Rightarrow AH=\frac{AB}{2}=\frac{a}{2}\)

\(\widehat{AEH}=\widehat{EAB}+\widehat{B_1}=30^0+30^0=60^0\)

\(\Rightarrow \frac{AH}{AE}=\sin \widehat{AEH}=\sin 60^0=\frac{\sqrt{3}}{2}\)

\(\Rightarrow AE=\frac{2AH}{\sqrt{3}}=\frac{a}{\sqrt{3}}(2)\)

Từ (1);(2) suy ra \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{\frac{a^2}{3}}+\frac{1}{a^2}=\frac{4}{a^2}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Hình vẽ:

Hệ thức lượng trong tam giác vuông