Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAHM vuông tại H và ΔABM vuông tại B có
MA chung
\(\widehat{AMH}=\widehat{BMA}\)
Do đó: ΔAHM=ΔABM
=>AH=AB=AD
b: Xét ΔADK vuông tại D và ΔAHK vuông tại H có
AK chung
AD=AH
Do đó: ΔADK=ΔAHK
c: \(\widehat{MAK}=\widehat{MAH}+\widehat{KAH}\)
\(=\dfrac{1}{2}\left(\widehat{BAH}+\widehat{DAH}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:
∠POB = ∠QOD∠ (đối đỉnh),
OB = OD
∠PBO = ∠QDO (so le trong).
Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ
Lại có BP // DQ nên tứ giác PBQD là hình bình hành
Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.
![](https://rs.olm.vn/images/avt/0.png?1311)
sao ko chứng minh luôn tính chất đường trung tuyến trong tam giác vuong luôn đi sao phải dài dòng thế