Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D O
\(\overrightarrow{AO}=\overrightarrow{OC};\overrightarrow{DO}=\overrightarrow{OB}\);
\(\overrightarrow{OA}=\overrightarrow{CO};\overrightarrow{DO}=\overrightarrow{OB}\).

Tham khảo:
Tập hợp S là: \(S = \{ \overrightarrow {AB} ;\;\overrightarrow {AC} ;\;\overrightarrow {AD} ;\;\overrightarrow {AO} ;\;\overrightarrow {BA} ;\;\overrightarrow {BC} ;\;\overrightarrow {BD} ;\;\overrightarrow {BO} ;\;\overrightarrow {CB} ;\;\overrightarrow {CA} ;\;\overrightarrow {CD} ;\;\overrightarrow {CO} ;\;\overrightarrow {DB} ;\;\overrightarrow {DC} ;\;\overrightarrow {DA} ;\;\overrightarrow {DO} ;\;\overrightarrow {OB} ;\;\overrightarrow {OC} ;\;\overrightarrow {OD} ;\;\overrightarrow {OA} \} \)
Các nhóm trong S là:
\(\begin{array}{l}\{ \overrightarrow {AB} ;\overrightarrow {DC} \} ,\{ \overrightarrow {BA} ;\overrightarrow {CD} \} ,\{ \overrightarrow {AD} ;\overrightarrow {BC} \} ,\{ \overrightarrow {DA} ;\overrightarrow {CB} \} ,\\\{ \overrightarrow {AO} ;\overrightarrow {OC} \} ,\{ \overrightarrow {OA} ;\overrightarrow {CO} \} ,\{ \overrightarrow {OB} ;\overrightarrow {DO} \} ,\{ \overrightarrow {BO} ;\overrightarrow {OD} \} .\end{array}\)

\(\left\{{}\begin{matrix}AM=\sqrt{AB^2+BM^2}=3\sqrt{5}\\DM=\sqrt{CD^2+CM^2}=3\sqrt{5}\end{matrix}\right.\) \(\Rightarrow\) tam giác ADM cân tại M
Gọi F là trung điểm AD \(\Rightarrow ABMF\) là hình chữ nhật \(\Rightarrow MF=AB=6\)
Theo tính chất trọng tâm: \(GF=\dfrac{1}{3}MF=2\)
\(DF=\dfrac{1}{2}AD=3\)
Đặt \(T=\left|\overrightarrow{GD}\right|=\left|\overrightarrow{GF}+\overrightarrow{FD}\right|\)
\(\Rightarrow T^2=GF^2+FD^2+2\overrightarrow{GF}.\overrightarrow{DF}=GF^2+DF^2=2^2+3^2=13\)
\(\Rightarrow\left|\overrightarrow{GD}\right|=\sqrt{13}\)

1: ABCD là hình bình hành
=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)
\(\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)
2: \(\overrightarrow{AC}-\overrightarrow{ED}+\overrightarrow{CD}+\overrightarrow{EC}-\overrightarrow{BC}\)
\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)
\(=\overrightarrow{AD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)
\(=\overrightarrow{AE}+\overrightarrow{EC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)
3:
a: \(\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AC}\)
\(=-\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{0}\)
\(\overrightarrow{AB}+\overrightarrow{CA}+\overrightarrow{BC}\)
\(=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}\)
Gọi H là trung điểm của BC
Xét ΔABC có AH là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AH}\)
b: ABCD là hình vuông
=>\(DB^2=DA^2+AB^2\)
=>\(DB^2=a^2+a^2=2a^2\)
=>\(DB=a\sqrt2\)
ABCD là hình vuông
=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)
=>\(\left|\overrightarrow{DA}+\overrightarrow{DC}\right|=DB=a\sqrt2\)
\(\overrightarrow{AB}-\overrightarrow{CB}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
=>\(\left|\overrightarrow{AB}-\overrightarrow{CB}\right|=CA=a\sqrt2\)

Chọn C.
Các vecto cùng phương với có điểm đầu và điểm cuối là các đỉnh của lục giác :

Số vecto khác vecto 0, có điểm đầu điểm cuối lấy từ 7 điểm A,B,C,D,E,F,O là:
\(A^2_7=7\cdot6=42\left(vecto\right)\)