K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

a, Ta có:AM+AN=OM-OA+ON-OA=OM+ON+AC=OC+AC=3/2OC

GA+3GB+GC+OD=2GB+OD=OB+OD=0

C,

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED} \)\( = 4\overrightarrow {EG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)

Mà: \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)

\(\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \) (do N là trung điểm của CD)

\( \Rightarrow \overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG}  + 2(\overrightarrow {GM}  + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)

b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Từ ý a ta suy ra \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Ta có: \(\overrightarrow {EA}  = 4\overrightarrow {EG}  \Leftrightarrow \overrightarrow {EA}  = 4.(\overrightarrow {EA}  + \overrightarrow {AG} ) \Leftrightarrow  - 3\overrightarrow {EA}  = 4\overrightarrow {AG} \)

\( \Leftrightarrow 3\overrightarrow {AE}  = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \)

Suy ra A, G, E thẳng hàng và \(AG  = \frac{3}{4}AE \) nên G thuộc đoạn AE.

21 tháng 2 2016

A B C D E F G

Ta cần chứng minh \(\overrightarrow{BF}.\overrightarrow{FG}=0\)

Ta có \(\overrightarrow{BF}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BE}\right)\)

\(\overrightarrow{FG}=\frac{1}{2}\left(\overrightarrow{FD}+\overrightarrow{FC}\right)=\frac{1}{2}\left(\overrightarrow{FA}+\overrightarrow{AD}+\overrightarrow{FE}+\overrightarrow{EC}\right)=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{EC}\right)\)

=> \(\overrightarrow{BF}.\overrightarrow{FG}=\frac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BE}\right)\left(\overrightarrow{AD}+\overrightarrow{EC}\right)=\frac{1}{4}\left(\overrightarrow{BA}.\overrightarrow{AD}+\overrightarrow{BA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{AD}+\overrightarrow{BE}.\overrightarrow{EC}\right)\)

                   \(=\frac{1}{4}\left(0+\overrightarrow{BA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{AD}+0\right)=\frac{1}{4}\left(\overrightarrow{BA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{AD}\right)\)

                   \(=\frac{1}{4}\left(\overrightarrow{EA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{BC}\right)\) (vì EA là hình chiếu của BA lên EC; AD song song và bằng BC)

                  \(=\frac{1}{4}\left(-BE^2+\overrightarrow{BE}.\overrightarrow{BC}\right)\)  (tính chất đường cao tam giác vuông BAC)

                  \(=\frac{1}{4}\overrightarrow{BE}\left(-\overrightarrow{BE}+\overrightarrow{BC}\right)=\frac{1}{4}\overrightarrow{BE}\left(\overrightarrow{EB}+\overrightarrow{BC}\right)=\frac{1}{4}\overrightarrow{BE}.\overrightarrow{EC}=0\)

(ĐFCM)

NV
8 tháng 1 2021

Gọi M là trung điểm EF

\(\overrightarrow{BM}=\dfrac{1}{2}\overrightarrow{BE}+\dfrac{1}{2}\overrightarrow{BF}=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CF}\right)\)

\(=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}=-\dfrac{7}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=-\dfrac{7}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=-\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{AD}+\overrightarrow{AG}=-\dfrac{1}{6}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AD}\)

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\cdot\left(\overrightarrow{OE}+\overrightarrow{OF}\right)=\overrightarrow{0}\)

6 tháng 12 2021

Em cảm ơn ạ

NV
24 tháng 8 2021

\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CB}=\overrightarrow{AD}+\overrightarrow{CB}\)

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OE}+\overrightarrow{EA}\right)+\left(\overrightarrow{OF}+\overrightarrow{FB}\right)+\left(\overrightarrow{OE}+\overrightarrow{EC}\right)+\left(\overrightarrow{OF}+\overrightarrow{FD}\right)\)

\(=2\left(\overrightarrow{OE}+\overrightarrow{EF}\right)+\left(\overrightarrow{EA}+\overrightarrow{EC}\right)+\left(\overrightarrow{FB}+\overrightarrow{FD}\right)\)

\(=2.\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)