\(Cho hình vuông ABCD tâm O, cạnh bằng a. Chứng minh mệnh đề sau là sai: AB.vectoBO=a²/2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Cho A = [-2;3) và B = ( m-1;m+1) . Ta có A hợp B =∅ khi và chỉ khi m thuộc : A .[-1;2) B. (- \(\infty\); 3)\(\cup\) [ 4;+\(\infty\) ) C. (-\(\infty\);-3] D . [-3;4) Câu 2 : Khẳng định nào sai ? A .( A \(\cup\) B) \(\cap\) C=A\(\cup\)(B \(\cap\) C) B .(A\(\cap\)B) ⊂ A C. A=(A\(\cap\)B) \(\cup\) (A\ B) D.(B\A)⊂B Câu 3 : Trong các mệnh đề sau đây...
Đọc tiếp

Câu 1 : Cho A = [-2;3) và B = ( m-1;m+1) . Ta có A hợp B =∅ khi và chỉ khi m thuộc :

A .[-1;2) B. (- \(\infty\); 3)\(\cup\) [ 4;+\(\infty\) ) C. (-\(\infty\);-3] D . [-3;4)

Câu 2 : Khẳng định nào sai ?

A .( A \(\cup\) B) \(\cap\) C=A\(\cup\)(B \(\cap\) C) B .(A\(\cap\)B) ⊂ A C. A=(A\(\cap\)B) \(\cup\) (A\ B) D.(B\A)⊂B

Câu 3 : Trong các mệnh đề sau đây mệnh đề nào sai ?

A . Hình bình hành có hai đường chéo bằng nhau là hình vuông

B . Tam giác cân có một góc bằng 60 độ là tam giác đều

C .∃x ∈ Q : x2 \(\le\)0

D .∃x ∈ Q : x2\(\le\) 5

Câu 4: Trong các mệnh đề sau mệnh đề nào có mệnh đề đảo đúng ?

A . Nếu hai tam giác bằng nhau thì có diện tích bằng nhau

B . Nếu một số tận cùng bằng 0 thì số đó chia hết cho 5

C .Nếu a chia hết cho 3 thì a chia hết cho 9

D .Nếu a và b chia hết cho c thì a+b chia hết cho c

Câu 5 : Cho hai tập hợp A ={ x ∈ R | (2x - x2)( 2x2 - 3x - 2) =0 } , B = {n ∈ N | 3 < n2 < 30} , chọn mệnh đề đúng

A . A\(\cap B=\left\{2\right\}\) B.A\(\cap B=\left\{3\right\}\) C. A\(\cap B=\left\{5;4\right\}\) D. A\(\cap B=\left\{2;4\right\}\)

1

Câu 1: B

Câu 2: C

Câu 3: A

Câu 4: D

Câu 5: A

2 tháng 4 2017

a) P ⇒ Q = “Nếu ABCD là một hình vuông thì nó là một hình bình hành”. Mệnh đề này đúng.

b) P ⇒ Q = “Nếu ABCD là một hình thoi thì ABCD là một hình chữ nhật. Mệnh đề này sai.

Câu 6:

a: A={-1;1;3}

b: X={-1;1}; X={-1;1;3}; X={-1;3}

Câu 5: 

Mệnh đề này sai vì chẳng có giá trị x là số hữu tỉ nào để \(x^2=2\) hết

Mệnh đề phủ định là: \(\overline{A}:\forall x\in Q,x^2< >2\)

19 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp

Giúp e những bài này với ạ

1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:

\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)

\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)

\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)

b) chứng minh n,h,v thẳng hàng

2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.

a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)

b) Chứng minh rằng :

i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)

ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)

3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.

Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)

b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)

4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)

a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)

b)Chứng minh M,N,P thẳng hàng

 

0
18 tháng 1 2019

Chọn C.

+ Phương án  A: ABCD là hình vuông nên mOa và OB vuông góc với nhau

suy ra  loại A.

+ Phương án  B: OA và OC vuông góc với nhau nên  và 

suy ra  loại B.

+ Phương án  C: 

Do  là 2 vecto ngược hướng nên 

 suy ra : 

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng