\(|\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019
https://i.imgur.com/bsF4RGI.jpg

1)\(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{CO}+\overrightarrow{DO}+\overrightarrow{OC}+\overrightarrow{OC}=\overrightarrow{CO}+\overrightarrow{OC}+\overrightarrow{DO}+\overrightarrow{OD}=\overrightarrow{0}\)

2)\(VT=\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)

3)\(VT=\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{OB}+\overrightarrow{AO}=\overrightarrow{AB}\)

4)\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\left(đpcm\right)=\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OD}=2\overrightarrow{MO}\left(đpcm\right)\)

Chúc bạn học tốt!!!!!

Đăng kí kênh Youtube 'Ban Mai Anime' giúp mình nhé!!!!

11 tháng 8 2018

b) \(VP=\overrightarrow{MC}-\overrightarrow{MD}=\overrightarrow{DC}=\overrightarrow{AB}=VP\left(đpcm\right)\)

c) \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\\ \Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\left(đúng\right)\\ \)

d) \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\\ \Rightarrow\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\\ \Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(đúng\right)\)

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng? A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0 B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0 C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0 D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0 Câu 2 : Cho...
Đọc tiếp

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng?

A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0

B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0

C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0

D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0

Câu 2 : Cho vec-tơ \(\overrightarrow{b}\) \(\ne\) \(\overrightarrow{0}\) , \(\overrightarrow{a}\) = -2 . \(\overrightarrow{b}\) , \(\overrightarrow{c}\) = \(\overrightarrow{a}\) + \(\overrightarrow{b}\) . Khẳng định nào sau đây sai ?

A. \(\overrightarrow{b}\) = \(\overrightarrow{c}\)

B. \(\overrightarrow{b}\)\(\overrightarrow{c}\) ngược hướng

C. \(\overrightarrow{b}\)\(\overrightarrow{c}\) cùng phương

D. \(\overrightarrow{b}\)\(\overrightarrow{c}\) đối nhau

Câu 3 : Cho hình vuông ABCD cạnh a\(\sqrt{2}\) . Tính S= \(\left|2\overrightarrow{AD}+\overrightarrow{DB}\right|\) ?

A. 2a

B. a

C. a\(\sqrt{3}\)

D. a\(\sqrt{2}\)

1

Câu 1: B
Câu 2: A

Câu 3: C

AH
Akai Haruma
Giáo viên
27 tháng 8 2017

Lời giải:

a) Bạn vẽ hình ra cho dễ tưởng tượng nhé!

Để ý rằng: \(\left\{\begin{matrix} \overrightarrow{MA}=\overrightarrow{MO}+\overrightarrow {OA}\\ \overrightarrow{MB}=\overrightarrow{MO}+\overrightarrow {OB}\\ \overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow {OC}\\ \overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow {OD}\end{matrix}\right.\)

\(\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\)

Vì $O$ là tâm của hình chữ nhật $ABCD$ nên :

\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\); \(\overrightarrow {OB}+\overrightarrow{OD}=\overrightarrow{0}\) (các cặp vector đối nhau)

Do đó, \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}\)

Suy ra \(\overrightarrow {MS}=4\overrightarrow {MO}\), kéo theo \(M,O,S\) thẳng hàng (theo thứ tự)

Do đó \(MS\) luôn quay quanh một điểm cố định là $O$

b)

Lấy điểm \(I\) thỏa mãn: \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=0\)

\(A,B,C,D\) cố định nên \(I\) cố định.

Ta có:

\(|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}+\overrightarrow{MI}+\overrightarrow{ID}|\)

\(=|4\overrightarrow{MI}|=a\Rightarrow \overrightarrow{MI}=\frac{a}{4}\)

Do đó tập hợp các điểm biểu diễn \(M\) là đường tròn tâm $I$ bán kính \(\frac{a}{4}\)

c) Ta có:

\(|\overrightarrow{NA}+\overrightarrow{NB}|=|\overrightarrow{NC}+\overrightarrow{ND}|\)

\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{NO}+\overrightarrow{OB}|=|\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{NO}+\overrightarrow{OD}|\)

\(\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{OB}|=|2\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{OD}|\) \((1)\)

Gọi \(I,K\) là trung điểm của \(AB,CD\) thì:

\(\left\{\begin{matrix} \overrightarrow{IA}+\overrightarrow{IB}=0\\ \overrightarrow {KC}+\overrightarrow{KD}=0\end{matrix}\right.\)

\((1)\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}|=|2\overrightarrow{NO}+\overrightarrow{OK}+\overrightarrow{KC}+\overrightarrow{OK}+\overrightarrow{KD}|\)

\(\Leftrightarrow |2\overrightarrow{NO}+2\overrightarrow{OI}|=|2\overrightarrow{NO}+2\overrightarrow{OK}|\)

\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow{OI}|=|\overrightarrow{NO}+\overrightarrow{OK}|\Leftrightarrow |\overrightarrow{NI}|=|\overrightarrow{NK}|\)

Do đó tập hợp điểm N nằm trên đường trung trực của \(IK\)

28 tháng 8 2017

cám ơn nhiều

23 tháng 7 2018

quá dễ

23 tháng 9 2017

(*) mk mới hok dạng toán này trên mạng ; nên lm thử thôi nha bn

hình :

A B C D F E O

a) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}\)

\(=\overrightarrow{OA}+\overrightarrow{EO}+\overrightarrow{OC}+\overrightarrow{AO}+\overrightarrow{OE}+\overrightarrow{CO}\)

\(=\left(\overrightarrow{AO}+\overrightarrow{OA}\right)+\left(\overrightarrow{CO}+\overrightarrow{OC}\right)+\left(\overrightarrow{EO}+\overrightarrow{OE}\right)\)

\(=\overrightarrow{AA}+\widehat{CC}+\overrightarrow{EE}=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}=VP\left(đpcm\right)\)

b) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=\overrightarrow{FO}+\overrightarrow{OE}-\overrightarrow{AO}\)

\(=\overrightarrow{FE}-\overrightarrow{FE}=\overrightarrow{EE}=\overrightarrow{0}=VP\left(đpcm\right)\)

c) ta có : \(VT=\overrightarrow{AB}+\overrightarrow{AO}+\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AF}+\overrightarrow{FE}\)

\(=\overrightarrow{AB}+\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}=VP\left(đpcm\right)\)

d) ta có : \(VT=\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{MF}+\overrightarrow{FE}\)

\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}\right)\)

\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FE}+\overrightarrow{EO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{OF}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{BA}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{AA}=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{0}\) \(=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}=VP\left(đpcm\right)\)

24 tháng 9 2017

Siêu quá, giải được toán 10 luôn!

Bái phục!