Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{CO}+\overrightarrow{DO}+\overrightarrow{OC}+\overrightarrow{OC}=\overrightarrow{CO}+\overrightarrow{OC}+\overrightarrow{DO}+\overrightarrow{OD}=\overrightarrow{0}\)
2)\(VT=\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)
3)\(VT=\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{OB}+\overrightarrow{AO}=\overrightarrow{AB}\)
4)\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\left(đpcm\right)=\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OD}=2\overrightarrow{MO}\left(đpcm\right)\)
Chúc bạn học tốt!!!!!
Đăng kí kênh Youtube 'Ban Mai Anime' giúp mình nhé!!!!
b) \(VP=\overrightarrow{MC}-\overrightarrow{MD}=\overrightarrow{DC}=\overrightarrow{AB}=VP\left(đpcm\right)\)
c) \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\\ \Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\left(đúng\right)\\ \)
d) \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\\ \Rightarrow\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\\ \Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(đúng\right)\)
Lời giải:
a) Bạn vẽ hình ra cho dễ tưởng tượng nhé!
Để ý rằng: \(\left\{\begin{matrix} \overrightarrow{MA}=\overrightarrow{MO}+\overrightarrow {OA}\\ \overrightarrow{MB}=\overrightarrow{MO}+\overrightarrow {OB}\\ \overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow {OC}\\ \overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow {OD}\end{matrix}\right.\)
\(\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\)
Vì $O$ là tâm của hình chữ nhật $ABCD$ nên :
\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\); \(\overrightarrow {OB}+\overrightarrow{OD}=\overrightarrow{0}\) (các cặp vector đối nhau)
Do đó, \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}\)
Suy ra \(\overrightarrow {MS}=4\overrightarrow {MO}\), kéo theo \(M,O,S\) thẳng hàng (theo thứ tự)
Do đó \(MS\) luôn quay quanh một điểm cố định là $O$
b)
Lấy điểm \(I\) thỏa mãn: \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=0\)
Vì \(A,B,C,D\) cố định nên \(I\) cố định.
Ta có:
\(|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}+\overrightarrow{MI}+\overrightarrow{ID}|\)
\(=|4\overrightarrow{MI}|=a\Rightarrow \overrightarrow{MI}=\frac{a}{4}\)
Do đó tập hợp các điểm biểu diễn \(M\) là đường tròn tâm $I$ bán kính \(\frac{a}{4}\)
c) Ta có:
\(|\overrightarrow{NA}+\overrightarrow{NB}|=|\overrightarrow{NC}+\overrightarrow{ND}|\)
\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{NO}+\overrightarrow{OB}|=|\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{NO}+\overrightarrow{OD}|\)
\(\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{OB}|=|2\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{OD}|\) \((1)\)
Gọi \(I,K\) là trung điểm của \(AB,CD\) thì:
\(\left\{\begin{matrix} \overrightarrow{IA}+\overrightarrow{IB}=0\\ \overrightarrow {KC}+\overrightarrow{KD}=0\end{matrix}\right.\)
Có
\((1)\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}|=|2\overrightarrow{NO}+\overrightarrow{OK}+\overrightarrow{KC}+\overrightarrow{OK}+\overrightarrow{KD}|\)
\(\Leftrightarrow |2\overrightarrow{NO}+2\overrightarrow{OI}|=|2\overrightarrow{NO}+2\overrightarrow{OK}|\)
\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow{OI}|=|\overrightarrow{NO}+\overrightarrow{OK}|\Leftrightarrow |\overrightarrow{NI}|=|\overrightarrow{NK}|\)
Do đó tập hợp điểm N nằm trên đường trung trực của \(IK\)
(*) mk mới hok dạng toán này trên mạng ; nên lm thử thôi nha bn
hình :
A B C D F E O
a) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}\)
\(=\overrightarrow{OA}+\overrightarrow{EO}+\overrightarrow{OC}+\overrightarrow{AO}+\overrightarrow{OE}+\overrightarrow{CO}\)
\(=\left(\overrightarrow{AO}+\overrightarrow{OA}\right)+\left(\overrightarrow{CO}+\overrightarrow{OC}\right)+\left(\overrightarrow{EO}+\overrightarrow{OE}\right)\)
\(=\overrightarrow{AA}+\widehat{CC}+\overrightarrow{EE}=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}=VP\left(đpcm\right)\)
b) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=\overrightarrow{FO}+\overrightarrow{OE}-\overrightarrow{AO}\)
\(=\overrightarrow{FE}-\overrightarrow{FE}=\overrightarrow{EE}=\overrightarrow{0}=VP\left(đpcm\right)\)
c) ta có : \(VT=\overrightarrow{AB}+\overrightarrow{AO}+\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AF}+\overrightarrow{FE}\)
\(=\overrightarrow{AB}+\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}=VP\left(đpcm\right)\)
d) ta có : \(VT=\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{MF}+\overrightarrow{FE}\)
\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}\right)\)
\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FE}+\overrightarrow{EO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{OF}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{BA}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{AA}=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{0}\) \(=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}=VP\left(đpcm\right)\)