K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

Tham khảo nha e :))

Cho tam giác ABC vuông cân tại A. Một điểm P nằm trong tam giác biết PA=1,PB=căn 2,PC=2. Tính góc APB câu hỏi 160453 - hoidap247.com

E tưởng phải có a/c CTV nào giải hộ chứ:)

13 tháng 2 2019

A B C P A' B' C'

Có : \(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}=\frac{BC^2}{PA'.BC}+\frac{CA^2}{PB'.CA}+\frac{AB^2}{PC'.AB}\)

                                                 \(=\frac{BC^2}{2S_{BPC}}+\frac{CA^2}{2S_{CPA}}+\frac{AB^2}{2S_{ABP}}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được

\(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}\ge\frac{\left(AB+BC+CA\right)^2}{2S_{ABC}}=\frac{P_{ABC}^2}{2S_{ABC}}=const\:\)

Dấu "=" khi 3 cái phân số chứa mẫu là S kia bằng nhau <=> PA' = PB' = PC'

                                                                                         <=> P là tâm đường tròn nội tiếp tam giác ABC 

10 tháng 10 2017

a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow

ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.

20 tháng 12 2019

Đội sản xuất của 1 nông trường nhập về 567 bao ngô giống, mỗi bao có 30kg ngô. Người ta chia đều ngô giống đó cho 378 gia đình đẻ trồng ngô vào vụ mùa tới. Hỏi mỗi gia đình nhận được bao nhiêu ki - lô - gam ngô giống?

( help me ! )

11 tháng 3 2021

Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).

Vậy B, E, F thẳng hàng.

11 tháng 3 2021

Trúc Giang Bạn cần giải thích đoạn nào vậy?

Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).

Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).

Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.

26 tháng 11 2014

A B C D F E

vì tam giác ABE đều nên góc ABE = AEB = 600

suy ra goc EBC = 90 - 30 = 600

vì tam giác BFC đều nên goc FBC = FCB = 60o

Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o

suy ra goc BEF = \(\frac{180-90}{2}\)=45o

ta có goc AEF = AEB + BEF = 60 + 45 = 105o

ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o

Ta có goc AED + goc AEF = 75 + 105 = 180o

suy ra D, E, F thẳng hàng