K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 11 2018
Bạn tự kí hiệu vào hính nhé
a) Ta có : MIO = BOC = 900
Mà 2 góc này ở vị trí đồng vị => MN // BD => MNDB là hình thang (1)
Ta có ABCD là hình vuông
=> ADB = BCD = ABD = DBC ( tính chất hình vuông bạn tự c/m )
hay ADB = ABD (2)
Từ (1)(2) => MNDB là hình thang cân ( đpcm )
b) Xét tứ giác AEIF có EAF = AFI = AEI = 900
=> tứ giác AEIF là hình chữ nhật (3)
Mặt khác ta có AC là đường p/g của góc BAD nên cũng đồng thời là đường p/g của góc EAF (4)
Từ (3)(4) => tứ giác AEIF là hình vuông ( đpcm )
Thử vẽ Sketchpad cũng đẹp ấy chứ:))
Gọi I là giao điểm của KB và HD;J là giao điểm của CK và HD;O là giao điểm của CM và KH.
Hình vuông ABCD có \(BD\) là đường chéo nên \(\widehat{KDM}=45^0\)
Xét tam giác KDM có \(\widehat{DKM}=90^0;\widehat{KDM}=45^0\Rightarrow\Delta KDM\) vuông cân tại K.Suy ra KD=KM ( 1 )
Tứ giác AHMK có \(\widehat{KAH}=\widehat{AHM}=\widehat{MKA}=90^0\) nên tứ giác AHMK là hình chữ nhật => AH=MK ( 2 )
Từ ( 1 );( 2 ) suy ra AH=DK.
Xét \(\Delta ADH\) và \(\Delta KDC\) có:KD=AH;DC=AD;\(\widehat{DAH}=\widehat{KDC}=90^0\)
\(\Rightarrow\Delta AHD=\Delta DCK\left(2cgv\right)\Rightarrow\widehat{ADH}=\widehat{DCJ}\)
Ta có:\(\widehat{ADJ}+\widehat{JDC}=90^0\Rightarrow\widehat{JDC}+\widehat{DCJ}=90^0\Rightarrow\widehat{DJC}=90^0\left(3\right)\)
Lại có:\(AD=AB\Rightarrow AK+KD=AH+HB\Rightarrow AK=HB\left(AH=KD\right)\)
Xét \(\Delta ABK\) và \(\Delta BCH\) có:\(AB=BC;HB=AK;\widehat{KAB}=\widehat{HBC}=90^0\Rightarrow\Delta ABK=\Delta BCH\left(2cgv\right)\)
\(\Rightarrow\widehat{ABK}=\widehat{HCB}\)
Mà \(\widehat{ABK}+\widehat{KBC}=90^0\Rightarrow\widehat{KBC}+\widehat{HCB}=90^0\Rightarrow CH\perp BK\left(4\right)\)
Từ ( 3 );( 4 ) suy ra I là trực tâm tam giác HKC.
Ta sẽ chứng minh CM đi qua I.Thật vậy !
Xét \(\Delta AHK\) và \(\Delta CMQ\) có:\(AK=MQ;AH=CQ\left(=DK\right);\widehat{KAH}=\widehat{MQC}=90^0\)
\(\Rightarrow\Delta AHK=\Delta QCM\left(2cgv\right)\Rightarrow\widehat{AHK}=\widehat{QCM}\) mà \(AH\perp QC\Rightarrow KH\perp CM\)( ai đó cm cái này với !! )
=> CM đi qua I hay \(CM\perp HK\)