Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chứng minh DN vuông góc với CM ,sử dụng tính chất đường trung tuyếncủa tam giác vuông ứng với cạnh huyền suy ra AQ = AD ,mà AD=AB nên suy ra AQ=AB
a. Xét ΔADM và ΔBCM, có:
^MAD = ^MBC (gt)
AM = BM (gt)
^AMD = ^BMC (đối đỉnh)
=> ΔADM = ΔBCM (c.g.c)
=> MC = MD (2 cạnh tương ứng)
mà MA = MB (gt)
=> Tứ giác ABCD là HBH
Lại có:
DP // BC (DA // BC)
^D = ^DCB (gt)
=> DPCD là hình thang vuông
Ta có:
S BCDP = S ABP + S ABC + S ADC và S APBC = S ABP + S ABC
Mà ΔABP = ΔBAC = ΔDCA
=> S ABP = S ABC = S ACD
Do đó:
S BCDP = 3S ABP và S APBC = 2S ABP
⇒ S APBC / S BCDP = 2S ABP / 3S ABP = 3/2
Vậy 2S BCDP = 3S APBC
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
a/ Ta có \(AM=\frac{AB}{2}=\frac{CD}{2}\) và AM//CD => AM là đường trung bình của tg CDP
=> MP=MC mà MA=MB (đề bài) => APBC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
\(S_{APB}=\frac{AB.AP}{2};S_{ABC}=\frac{AB.BC}{2};S_{ACD}=\frac{CD.AD}{2}\) mà AP=AD=BC =CD \(\Rightarrow S_{APB}=S_{ACD}=S_{ABC}\)
Ta có \(S_{BCDP}=S_{APB}+S_{ACD}+S_{ABC}=3S_{ABC}\Rightarrow2S_{BCDP}=6S_{ABC}\)
Ta có \(S_{APBC}=S_{APB}+S_{ABC}=2S_{ABC}\Rightarrow3S_{APBC}=6S_{ABC}\)
\(\Rightarrow2S_{BCDP}=3S_{APBC}\left(dpcm\right)\)
c/
Xét tgv BCM và tgv CDN có
CN=BM (đều bằng 1/2 cạnh góc vuông
CD=BC (cạnh góc vuông)
=> tg BCM=tg CDN (trường hợp 2 cạnh góc v bằng nhau)
\(\Rightarrow\widehat{BCM}=\widehat{CDM}\) Mà \(\widehat{CDN}+\widehat{CND}=90\Rightarrow\widehat{BCM}+\widehat{CND}=90\Rightarrow\widehat{CQN}=90\)
Ta có AP=AD ( chứng minh trên) => AQ là trung tuyến thuộc cạnh huyền của tgv DQP => AQ=PD/2=AD=AB (dpcm)
Bài 2:
Ta có \(x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+3\ge3\Rightarrow x^2-4x+7>0\forall x\)
a:
Ta có: AD//BC
P\(\in\)AD
Do đó: AP//BC
Ta có:BA\(\perp\)AD
P\(\in\)AD
Do đó: BA\(\perp\)PD tại A
Xét ΔMAP vuông tại A và ΔMBC vuông tại B có
MA=MB
\(\widehat{AMP}=\widehat{BMC}\)(hai góc đối đỉnh)
Do đó: ΔMAP=ΔMBC
=>AP=BC
Xét tứ giác APBC có
AP//BC
AP=BC
Do đó: APBC là hình bình hành
Xét tứ giác BCDP có BC//DP
nên BCDP là hình thang
Hình thang BCDP có BC\(\perp\)CD
nên BCDP là hình thang vuông
b: Vì BCDP là hình thang vuông
nên \(S_{BCDP}=\dfrac{1}{2}\left(BC+DP\right)\cdot DC\)
\(=\dfrac{1}{2}\cdot DC\left(BC+DA+AP\right)\)
\(=\dfrac{1}{2}\cdot DC\cdot\left(DC+DC+BC\right)\)
\(=\dfrac{1}{2}\cdot DC\cdot\left(2DC+DC\right)=\dfrac{1}{2}\cdot3DC^2=\dfrac{3}{2}\cdot DC^2\)
Vì AP=BC
mà BC=AD
nên AP=AD
=>A là trung điểm của PD
\(S_{BPAC}=S_{PAB}+S_{ABC}\)
\(=\dfrac{1}{2}\cdot AP\cdot AB+\dfrac{1}{2}\cdot AB\cdot BC\)
\(=\dfrac{1}{2}\cdot BC\cdot AB+\dfrac{1}{2}\cdot BC\cdot AB=BC\cdot AB=AB^2=DC^2\)
=>\(S_{BCDP}=\dfrac{3}{2}\cdot S_{BPAC}\)
=>\(2\cdot S_{BCDP}=3\cdot S_{BPAC}\)