K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

loading...   a) *) Chứng minh AMNB là hình bình hành:

Do O là giao điểm của AC và BD

Mà ABCD là hình bình hành (gt)

⇒ O là trung điểm của AC và BD

Do MN // AB (gt)

⇒ OM // CD

∆ACD có

O là trung điểm AC

OM // CD

⇒ M là trung điểm AD

⇒ AM = AD : 2   (1)

Do MN // AB (gt)

⇒ ON // AB

∆ABC có:

O là trung điểm AC (cmt)

ON // AB (cmt)

⇒ N là trung điểm BC

⇒ BN = BC : 2   (2)

Do ABCD là hình bình hành (gt)

⇒ AD // BC

⇒ AM // BN

Từ (1) và (2) ⇒ AM = BN

Tứ giác AMNB có:

AM // BN (cmt)

AM = BN (cmt)

⇒ AMNB là hình bình hành

*) Chứng minh APCQ là hình bình hành

Do ABCD là hình bình hành (gt)

⇒ AB // CD

⇒ AP // CQ

Tứ giác APCQ có:

AP // CQ (cmt)

AP = CQ (gt)

⇒ APCQ là hình bình hành

c) Do O là trung điểm AC (cmt)

M là trung điểm AD (cmt)

⇒ OM là đường trung bình của ∆ACD

⇒ OM = CD : 2   (3)

Do O là trung điểm AC (cmt)

N là trung điểm BC (cmt)

⇒ ON là đường trung bình của ∆ABC

⇒ ON = AB : 2

Mà AB = CD (do ABCD là hình bình hành)

⇒ OM = ON

⇒ O là trung điểm MN

Do APCQ là hình bình hành (cmt)

O là trung điểm AC (cmt)

⇒ O là trung điểm PQ

Tứ giác MPNQ có:

O là trung điểm MN (cmt)

O là trung điểm PQ (cmt)

⇒ MPNQ là hình bình hành

⇒ MP // NQ và MQ = NP

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)

=>AM là tia phân giác của \(\widehat{BAC}\)

=>M là chân đường phân giác kẻ từ A xuống BC

Ta có: MQ//BD

NP//BD

Do đó: MQ//NP

Ta có: MN//AC

\(Q,P\in AC\)

Do đó: MN//PQ

Xét tứ giác MNPQ có

MQ//NP

MN//PQ

Do đó: MNPQ là hình bình hành

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

 Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

28 tháng 9 2019

a) Ta chứng minh A N = C M A N ∥ C M ⇒ A M C N  là hình bình hành.

Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC

Do ANCM là hình bình hành có AC và MN là hai đường chéo

 

⇒  O là trung điểm MN

b. Ta có: EM//AC nên E M D ^ = A C D ^ (2 góc so le trong)

NF//AC nên B N F ^ = B A C ^  (2 góc so le trong)

Mà A C D ^ = B A C ^  (vì AB//DC, tính chất hình chữ nhật)

⇒ E M D ^ = B N F ^

Từ đó chứng minh được  ∆ E D M   =   ∆ F B N   ( g . c . g )

⇒ E M = F N

 

Lại có EM//FN (vì cùng song song với AC)

Nên tứ giác ENFM là hình bình hành

c) Tứ giác ANCM là hình thoi Û AC ^ MN tại O Þ M, N lần lượt là giao điểm của đường thẳng đi qua O, vuông góc AC và cắt CD, AB.

Khi đó M và N là trung điểm của CD và AB.

d) Ta chứng minh được DBOC cân tại O ⇒ O C B ^ = O B C ^   v à   N F B ^ = O C F ^  (đv) Þ DBFI cân tại I Þ IB = IF  (1)

Ta lại chứng minh được DNIB cân tại I Þ IN = IB  (2)

Từ (1) và (2) Þ I là trung điểm của NF.