K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

a, Tứ giác BDQH nội tiếp vì  B D H ^ + B Q H ^ = 180 0

b, Vì tứ giác ACHQ nội tiếp =>  C A H ^ = C Q H ^

Vì tứ giác ACDF nội tiếp  =>  C A D ^ = C F D ^

Từ đó có  C Q H ^ = C F D ^  mà 2 góc ở vị trí đồng vị => DF//HQ

c, Ta có  H Q D ^ = H B D ^  (câu a)

H B D ^ = C A D ^ = 1 2 s đ C D ⏜

C A D ^ = C Q H ^  (ACHQ cũng nội tiếp)

=>  H Q D ^ = H Q C ^ => QH là phân giác  C Q D ^

Mặt khác chứng minh được CH là phân giác góc  Q C D ^

Trong tam giác QCD có H là giao của ba đường phân giác nên H là tâm đường tròn nội tiếp => H cách đều 3 cạnh CD, CQ, DQ

d, Vì CMFN là hình chữ nhật nên MN và CF cắt nhau tại trung điểm của mỗi đường.

Trong tam giác FCD có MN//CD và MN đi qua trung điểm CF nên MN đi qua trung điểm DF

Mặt khác AB đi qua trung điểm của DF nên 3 đường thẳng MN, AB, DF đồng quy

20 tháng 2 2022

bạn giải thích lại giúp mình câu b được không ạ? tại mình không hiểu câu đó lắm, mình cảm ơn!

25 tháng 5 2017

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

21 tháng 4 2018

Tương tự HS tự làm

13 tháng 12 2017

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do M và N là điểm chính giữa của cung  A B   ⏜ v à   A C ⏜

4 tháng 2 2017

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

28 tháng 11 2016

không biết làm sao đây?

31 tháng 5 2017

mình mới lớp 4.

20 tháng 2 2021
Fuck. Fuck. Fuck. Fuck