K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2022

A B C D H M N

Xét tg vuông ADN và tg vuông DCM có

AD=CD (cạnh hình vuông) (1)

Ta có

CD=BC (cạnh hình vuông)

NC=ND; MB=MC (gt)

=> ND=MC=MB=BC/2 (2)

Từ (1) và (2) => tg ADN = tg DCM (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{DAN}=\widehat{CDM}\)

Mà \(\widehat{CDM}+\widehat{ADM}=\widehat{ADC}=90^o\)

\(\Rightarrow\widehat{DAN}+\widehat{ADM}=90^o\)

Xét tg ADH có

\(\widehat{DAN}+\widehat{ADM}=90^o\Rightarrow\widehat{AHD}=90^o\Rightarrow AN\perp DM\)

b/

Xét tg vuông ADN có

\(DN=\dfrac{CD}{2}=\dfrac{AB}{2}=\dfrac{2}{2}=1\)

\(AN=\sqrt{AD^2+DN^2}=\sqrt{2^2+1^2}=\sqrt{5}\) (Pitago)

\(DN^2=NH.AN\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow NH=\dfrac{DN^2}{AN}=\dfrac{1^2}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

\(\Rightarrow AH=AN-NH=\sqrt{5}-\dfrac{\sqrt{5}}{5}=\dfrac{4\sqrt{5}}{5}\)

Xét tg vuông ADN và tg vuông ABM có

AD=AB (cạnh hình vuông)

ND=MB (cmt)

=> tg ADN = tg ABM (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{DAN}=\widehat{BAM}=\alpha\)

Ta có \(\widehat{MAN}=\widehat{BAD}-\widehat{DAN}-\widehat{BAM}=\dfrac{\Pi}{2}-2\alpha\)

\(\Rightarrow\cos\widehat{MAN}=\cos\left(\dfrac{\Pi}{2}-2\alpha\right)=\sin2\alpha=2\sin\alpha.\cos\alpha\)

Mà 

\(\sin\alpha=\dfrac{DN}{AN}=\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5};\cos\alpha=\dfrac{AD}{AN}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\Rightarrow\cos\widehat{MAN}=2.\dfrac{\sqrt{5}}{5}.\dfrac{2\sqrt{5}}{5}=\dfrac{4}{5}=0,8\)