K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

A B C D E
Theo tính chất trung điểm
\(\overrightarrow{AE}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\)\(=\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)\(=\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}=\overrightarrow{u}+\dfrac{1}{2}\overrightarrow{v}\).

24 tháng 9 2023

Tham khảo:

Ta có: \( \overrightarrow {AB}  + \overrightarrow {AD}  =  \overrightarrow {AC} \) (do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {BM}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

\( \Rightarrow \) Tứ giác ABMC là hình bình hành.

\( \Rightarrow  \overrightarrow {DC} =\overrightarrow {AB}  = \overrightarrow {CM} \). 

\( \Rightarrow C\) là trung điểm DM.

Vậy M thuộc DC sao cho C là trung điểm DM.

Chú ý khi giải

+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

+) ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

30 tháng 3 2017

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.

Ta có = => =

= - = - = -

Theo quy tắc 3 điểm đối với tổng vec tơ:

= + => = - = (- ).

AK là trung tuyến thuộc cạnh BC nên

+ = 2 => - += 2

Từ đây ta có = + => = - - .

BM là trung tuyến thuộc đỉnh B nên

+ = 2 => - + = 2

=> = + .

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Với E là điểm bất kì, ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {CE}  = \overrightarrow {AC}  + \overrightarrow {CE}  = \overrightarrow {AE} \)

b) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \).

Với hai điểm bất kì M, N ta có:

 \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {IN}  = 2\overrightarrow {MI}  + 2\overrightarrow {IN}  = 2\left( {\overrightarrow {MI}  + \overrightarrow {IN} } \right) = 2\overrightarrow {MN} .\)

c) Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Với hai điểm bất kì M, N ta có:

\(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  - 3\overrightarrow {MN}  = 3\overrightarrow {MG}  - 3\overrightarrow {MN}  = 3\left( {\overrightarrow {MG}  - \overrightarrow {MN} } \right) = 3\overrightarrow {NG} \).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

\(AD = BC\) nhưng \(AD\) và \(BC\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) không bằng nhau.

\(CD > AB\) do đó hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.

\(AC\) và \(BD\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không bằng nhau.

24 tháng 9 2023

NV
2 tháng 1

a.

Do M là trung điểm OB \(\Rightarrow\overrightarrow{OM}=\dfrac{1}{2}\overrightarrow{OB}\)

\(\Rightarrow\overrightarrow{AM}=\overrightarrow{AO}+\overrightarrow{OM}=-\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}\)

b.

Do N là trung điểm OC \(\Rightarrow\overrightarrow{ON}=\dfrac{1}{2}\overrightarrow{OC}\)

\(\Rightarrow\overrightarrow{BN}=\overrightarrow{BO}+\overrightarrow{ON}=-\overrightarrow{OB}+\dfrac{1}{2}\overrightarrow{OC}\)

\(\overrightarrow{MN}=\overrightarrow{MO}+\overrightarrow{ON}=-\overrightarrow{OM}+\overrightarrow{ON}=-\dfrac{1}{2}\overrightarrow{OB}+\dfrac{1}{2}\overrightarrow{OC}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(\overrightarrow {CE}  = \overrightarrow {AN}  \Rightarrow CE//AN\) và \(CE = AN = ND = BM = MC\)

Suy ra \(\overrightarrow {MC}  = \overrightarrow {CE} \)

+) \(\overrightarrow {NC}  + \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CE}  = \overrightarrow {NE} \)

+) ABCD là hình bình hành nên \(\overrightarrow {CD}  = \overrightarrow {BA} \)

\(\overrightarrow {AM}  + \overrightarrow {CD}  = \overrightarrow {AM}  + \overrightarrow {BA}  = \overrightarrow {BM} \)

+) Ta có \(\overrightarrow {MC}  = \overrightarrow {AN}  \Rightarrow AMCN\) là hình bình hành nên \(\overrightarrow {NC}  = \overrightarrow {AM} \)

\(\overrightarrow {AD}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {AM}  = \overrightarrow {AE} \) (vì AMED là hình bình hành)

b) Ta có:

+) \(\overrightarrow {NC}  - \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CM}  = \overrightarrow {NM} \)

+) \(\overrightarrow {AC}  - \overrightarrow {BC}  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

+) \(\overrightarrow {AB}  - \overrightarrow {ME}  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

c) Ta có:

\(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AM}  + \overrightarrow {MC}  = \overrightarrow {AC} \)

Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Từ đó suy ra \(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AD} \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ M kẻ đường thẳng song song với AB, cắt AD tại E.

Khi đó tứ giác ABME là hình bình hành.

Do đó: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AE} \).

Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)

\( \Rightarrow \overrightarrow {AE}  = \frac{1}{2}\overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Vậy \(\overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Chú ý khi giải

+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.

30 tháng 3 2017

Ta có: \(\overrightarrow{MB}=3\overrightarrow{MC}\Rightarrow\overrightarrow{MB}=3\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow\overrightarrow{MB}=3\overrightarrow{MB}+3\overrightarrow{BC}\)

\(\Rightarrow-\overrightarrow{MB}=3\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BC}\). Mà \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) nên \(\overrightarrow{BM}=\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

Theo quy tắc 3 điểm, ta có

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\Rightarrow\overrightarrow{AM}=\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}\)

\(\Rightarrow\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}\) hay \(\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{u}+\dfrac{3}{2}\overrightarrow{v}\)

30 tháng 3 2017

Trước hết ta có

= 3 => = 3 ( +)

=> = 3 + 3

=> - = 3

=> =

= - nên = (- )

Theo quy tắc 3 điểm, ta có

= + => = + -

=> = - + hay = - +