K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2020

Kẻ OI vuông góc với FG tại I. Ta chứng minh OI=OM =a/2 (a là cạnh của hình vuông)

KHI đó GF tiếp xúc với đường tròn tại I

Hai tam giác vuông ADG và  FBK có:

\(\widehat{DAG}=\widehat{KFB}\)\(\widehat{A_1}+\widehat{A_2}=90^0\Rightarrow\widehat{A_1}+\widehat{K_1}=90^0\)MÀ \(\widehat{K_1}+\widehat{KFB}=90^0\))

\(\Rightarrow\Delta ADG~\Delta FBK\Rightarrow\frac{AD}{FB}=\frac{DG}{BK}\)

\(\Rightarrow DG=\frac{AD}{FB}.BK=\frac{a}{3a}.\frac{a}{2}=\frac{2a}{3}\)

Từ đó \(CG=\frac{a}{3};MG=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}\)

Trong tam giác vuông CGF có:

\(GF^2=CF^2+CG^2=\frac{a^2}{16}+\frac{a^2}{9}=\frac{25a^2}{144}\Rightarrow CF=\frac{5a}{12}\)

Ta có: \(S_{OGF}=S_{OMCN}-\left(S_{ÒNF}+S_{OMG}+S_{CGF}\right)\)\(=\frac{a^2}{4}-\left(\frac{a^2}{16}+\frac{a^2}{24}+\frac{a^2}{24}\right)=\frac{5a^2}{48}\)(1)

Mặt khác: \(S_{OGF}=\frac{1}{2}.OI.GF=OI.\frac{5a}{24}\)(2)

Từ (1);(2) \(\Rightarrow\frac{5a^2}{48}=OI.\frac{5a}{24}\Rightarrow OI=\frac{a}{2}\)

Vậy GF tiếp xúc với đường tròn tâm O tại I

15 tháng 11 2020

đánh dấu A1 vào góc DAG , A2 vào góc BAC, K1 vào góc BKC. kẻ OM vuông góc DC, kẻ OG, kẻ OI vuông góc GF

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :a) A, I, H, B là 4 đỉnh của 1 hình bình hànhb) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính RBài 2 : Cho đường tròn tâm O, đường kính AB và một...
Đọc tiếp

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@


Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R

Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng

Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O)(O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm

0
1 tháng 5 2020

a,Áp dụng hệ thức lượng trong tam giác:

+) Tam giácACE , có :

\(AC^2=AB.AE\left(1\right)\)

+) Tam giác ACF , có :

\(AC^2=AD.\text{AF}\left(2\right)\)

Từ (1) và (2) =>AB.AE=AD=AF             (đpcm)

1 tháng 5 2021

ý a dễ

b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90

Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)

=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn

c/

Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)

số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)

số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)

Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC

1 tháng 5 2021

@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.