K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

Sory mứ lp 6 ak

20 tháng 4 2016

Phần a) bạn nhầm đề thì phải. Theo đề ra, E thuộc AB thì sao có tứ giác ABEH được!

1 tháng 10 2018

giờ muộn rồi chị ạ ko ai giải nữa đâu

1 tháng 10 2018

A B C D N E M 1 2

Mk chỉ nêu cách làm bạn tự triển khai nha!

CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)

(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))

\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C

\(\Rightarrow AB=CE\)

Từ (*) suy ra:

\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\) 

            \(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)

Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)

\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)

CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)

\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)

Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)

a) xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)

=> tứ giác ABOC nội tiếp

b) Xét tam giác  ABH zà tam giác AOB có

\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)

=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)

\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)

xét tam giác ABD zà tam giác AEB có

\(\widehat{BAE}chung\)

\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)

\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)

từ 1 zà 2 suy ra

AH.AO=AE.AD(dpcm)

=>\(\Delta ADH~\Delta AOE\)

\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng

lại có 

\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)

=> tứ giác DEOH nội tiếp

c)  Có tam giá AOM zuông tại O , OB là đường cao

\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)

\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)

=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)

dấu = xảy ra khi OA=OM

=> tam giác OAM zuông cận tại O

=> góc A = độ

bài 2 

ra kết quả là \(6\pi m^2\)

nếu cần giải bảo mình 

Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại Fa.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)b. Cho AB = 4cm, xác...
Đọc tiếp

Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F

a.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)

b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.

c. Khi C khác O , đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM  cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN

d. Chứng minh 3 điểm: N, E, F thẳng hàng

Dùng kiến thức kì 1 ko dùng nội tiếp ai giúp em



 

0