K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Câu 1:

a)

\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)

\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)

\(BC=AD\) (ABCD là hình bình hành)

\(\Rightarrow AN=ND=BM=MC\) (1)

mà ND // BM

=> BMDN là hình bình hành

=> BN // MD (2)

=> MDKB là hình thang

b)

MC = AN (theo 1)

mà MC // AN (ABCD là hình bình hành)

=> AMCN là hình bình hành

=> AM // CN (3)

Từ (2) và (3)

=> MPNQ là hình bình hành (4)

BM = AN (theo 1)

mà BM // AN (ABCD là hình bình hành)

=> ABMN là hình bình hành

mà AB = BM \(\left(=\frac{1}{2}BC\right)\)

=> ABMN là hình thoi

=> AM _I_ BN

=> MPN = 900 (5)

Từ (4) và (5)

=> MPNQ là hình chữ nhật

c)

MPNQ là hình vuông

<=> MN là tia phân giác của PMQ

mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)

=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến

=> MN là đường cao của tam giác MDA

=> MNA = 900

mà MNA = ABM (ABMN là hình thoi)

=> ABM = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

Câu 2:

a)

\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)

\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)

mà AB = CD (ABCD là hình bình hành)

=> AE = EB = CF = FD (1)

mà AE // CF (ABCD là hình bình hành)

=> AECF là hình bình hành

b)

AE = FD (theo 1)

mà AE // FD (ABCD là hình bình hành)

=> AEFD là hình bình hành

mà DA = AE \(\left(=\frac{1}{2}AB\right)\)

=> AEFD là hình thoi

=> AF _I_ ED

=> EMF = 900 (2)

EB = FD (theo 1)

mà EB // FD (ABCD là hình bình hành)

=> EBFD là hình bình hành

=> EM // NF

mà EN // MF (AECF là hình bình hành)

=> EMFN là hình bình hành

mà EMF = 900 (theo 2)

=> EMFN là hình chữ nhật

c)

EMFN là hình vuông

<=> EF là tia phân giác của MEN

mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)

=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến

=> EF là đường cao của tam giác ECD

=> EFD = 900

mà EFD = DAE (AEFD là hình thoi)

=> DAE = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

25 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét tứ giác APQD, ta có: AB // CD (gt) hay AP // QD

       AP = 1/2 .AB (gt)

       QD = 1/2 CD (gt)

       AB= CD (vì ABCD là hình chữ nhật)

Suy ra: AP = QD

Hay tứ giác APQD là hình bình hành.

Lại có: ∠ A = 90 0  (vì tứ giác ABCD là hình chữ nhật)

Suy ra tứ giác APQD là hình chữ nhật.

Mà AD = AP = 1/2 AB

Vậy tứ giác APQD là hình vuông.

⇒ AQ ⊥ PD (t/chất hình vuông) ⇒  ∠ (PHQ) =  90 0  (1)

HP = HQ (t/chất hình vuông)

* Xét tứ giác PBCQ, ta có: AB // CD hay BP //CQ

            PB = 1/2 AB (gt)

            CQ = 1/2 CD (gt)

            AB = CD do ABCD là hình chữ nhật

Suy ra: PB = CQ nên tứ giác PBCQ là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Lại có:  ∠ B =  90 0  (vì ABCD là hình chữ nhật) suy ra tứ giác PBCQ là hình chữ nhật

PB = BC ( vì cùng bằng AD = 1/2 AB)

Vậy tứ giác PBCQ là hình vuông

⇒ PC ⊥ BQ (t/chất hình vuông) ⇒  ∠ (PKQ) =  90 0  (2)

PD là tia phân giác  ∠ (APQ) ( t/chất hình vuông)

PC là tia phân giác  ∠ (QPB) (t/chất hình vuông)

Suy ra: PD ⊥ PC (t/chất tia phân giác của hai góc kề bù) ⇒ (HPK) =  90 0  (3)

Từ (1), (2) và (3) suy ra tứ giác PHQK là hình vuông.

30 tháng 6 2017

Hình vuông