K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

a.  Lấy điểm X trên tia đối của tia BC sao cho BX=DE, suy ra tam giác ABX bằng tam giác ADE (cạnh huyền, cạnh góc vuông). Do đó AX=AE. Xét tam giác vuông XAF, áp dụng hệ thức liên hệ giữa cạnh góc vuông và đường cao ta có \(\frac{1}{AX^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\to\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)   không đổi. 

b.  Kẻ EH vuông góc với KF. Ta có \(\sin EKF\cdot\cos EFK+\sin EFK\cdot\cos EKF=\frac{EH\cdot FH}{KE\cdot EF}+\frac{KH\cdot EH}{KE\cdot EF}=\frac{EH\left(FH+KH\right)}{KE\cdot EF}=\frac{EH\cdot KF}{KE\cdot EF}\)
\(\frac{2S_{KEF}}{KE\cdot EF}=\frac{KA\cdot EF}{KE\cdot EF}=\frac{KA}{KE}=\sin\angle AEK=\cos\angle AKE.\)      (ĐPCM)

25 tháng 7 2017

cho hình thoi ABCD có canh .Qua C vẽ đường thẳng M cắt các tia đối của các tia BA và DA theo thứ tự E và F.CMR tổng 1/AE +1/AF không đổi với mọi vị trí nói trên cảu đường thẳng m

BÁC NÀO BK CHỈ MK VS

10 tháng 10 2016

chtt sẽ có câu a nhé bạn
câu b thì bạn thay góc vào là ra
còn câu c thì =)) 

19 tháng 9 2018

olm-logo.png

1. Cho hình bình hành ABCD. Đường thẳng qua C vuông góc với CD cắt đường thẳng qua A vuông góc với BD tại F. Đường thẳng qua B vuông góc với AB cắt đường trung trực của AC tại E. Hai đường thẳng BC và EF cắt nhau tại K. Tính tỉ số \(\frac{KE}{KF}\)2. Cho tam giác ABC có 3 góc nhọn nội tiếp (O). M trung điểm BC, N đối xứng với M qua O. Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B...
Đọc tiếp

1. Cho hình bình hành ABCD. Đường thẳng qua C vuông góc với CD cắt đường thẳng qua A vuông góc với BD tại F. Đường thẳng qua B vuông góc với AB cắt đường trung trực của AC tại E. Hai đường thẳng BC và EF cắt nhau tại K. Tính tỉ số \(\frac{KE}{KF}\)

2. Cho tam giác ABC có 3 góc nhọn nội tiếp (O). M trung điểm BC, N đối xứng với M qua O. Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D. Kẻ đường kính AE. CMR:

a) BA.BC = 2BD.BE

b) CD đi qua trung điểm của đường cao AH của ttam giác ABC.

3. Có 10 vận động viên tham gia đấu quần vợt. Cứ 2 người trong họ chơi với nhau đúng 1 trận. Người thứ nhất thắng x1 trận và thua y1 trận; người thứ hai thắng x2 trận và thua y2 trận; ...; người thứ mười thắng x10 trận và thua y10 trận. Biết trong 1 trận đấu quần vợt ko có kết quả hòa. CMR: \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+...+y_{10}^2\)

1
26 tháng 3 2017

Chỉ hướng dẫn câu đại thôi nhé

Theo đề bài thì ta có hai giả thuyết sau

\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)

Theo đề bài thì

\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)

\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)

\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)

\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM