Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(S_{ABCD}=36cm^2\Rightarrow BC^2=36\Rightarrow BC=6cm\left(Vi:BC>0\right)\)
Vì ABCD là hình vuông (gt)
\(\Rightarrow BC=DC=AD=AB=6\left(cm\right)\)
Mà : M , N lần lượt là trung điểm của BC , CD
\(\Rightarrow BM=MC=DN=NC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
Có : \(S_{AMN}=S_{ABCD}-\left(S_{ADN}+S_{ABM}+S_{NMC}\right)\)
\(=36-\left(\frac{1}{2}.AD.DN+\frac{1}{2}.AB.BM+\frac{1}{2}.MC.NC\right)\)
\(=36-\left(\frac{1}{2}.6.3+\frac{1}{2}.6.3+\frac{1}{2}.3.3\right)=\frac{27}{2}\left(cm^2\right)\)
Chúc bạn học tốt !!!
a, \(S_{ABCD}\) = AH.CD
= 3.4
= 12 (\(cm^2\))
b, Ta có M là trung điểm AB
⇒ AM = \(\dfrac{AB}{2}\) = \(\dfrac{4}{2}\) = 2 (cm)
\(S_{ADM}\) = \(\dfrac{AH.AM}{2}\)
= \(\dfrac{3.2}{2}\)
= 3 (\(cm^2\))
c, Gọi O là trung điểm
c, Gọi O là trung điểm ND
Từ O kẻ OP // CD
Xét ΔNDC có: NO = OD
OP // CD
⇒ OP là đường trung bình ΔNDC
⇒ OP = \(\dfrac{1}{2}DC\) mà DC = 4 cm
⇒ OP = 2 cm
Xét ΔAMN và ΔPON có:
Góc BAC = góc APO
Góc MOP = góc AMD
AM = ON
⇒ ΔAMN = ΔPON (g.c.g)
⇒ NM = ON mà ON = \(\dfrac{1}{2}DM\)
⇒ DN = 2MN
a) Gọi H là chân đường vuông góc kẻ từ A xuống CD
Theo đề bài, ta có: AH=3(cm)
Xét hình bình hành ABCD có AH là đường cao ứng với cạnh CD(gt)
nên \(S_{ABCD}=AH\cdot CD=4\cdot3=12\left(cm^2\right)\)
chẳng ai chịu giải,mà tôi giải ra được rồi nhé, đáp án là 20 cm còn cách làm thì ko tiết lộ đâu