Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC: góc BAC = 90o (gt)
=> AB2 + AC2 = BC2 (đ/lí Py-ta-go)
=> 92 + 122 = 81 + 144 = 225 = BC2
=> BC = 15 (cm)
b, Xét tam giác IAD và tam giác CAD
IA = CA (gt)
góc DAI = góc DAC = 90o (gt)
DA chung
=> tam giác IAD = tam giác CAD (c.g.c)
=> ID = DC ( cặp góc tương ứng)
c, Xét tam giác IBA và tam giác CBA
IA = IC (gt)
góc IAB = góc CAB = 90o (gt)
BA chung
=> tam giác IBA = tam giác CBA(c.g.c)
=> IB = CB ( cặp cạnh tương ứng)
Xét tam giác BDC và tam giác BDI
BC = BI (c.m trên)
BD chung
DC = DI ( câu b)
=> tam giác BDC = tam giác BDI ( c.c.c)
a) tam giác ABC vuông tại A có:
AB2 + AC2 = BC2
=> 92 + 122 = BC2
=> BC2 = 81 + 144 = 225
=> BC = \(\sqrt{225}=15cm\)
b) ???
c) ???
có tam giác ABC cân tại A => AB = AC(=12cm)
Xét tam giác ACD, theo định lí Pytago:
=> AC2 + CD2= AD2
Thay số: 122 + 142 = AD2
144 + 196 = AD2
=> AD2= 340
=> AD = 18.43908891459 hoặc => AD= \(\sqrt{340}\)
Mình giải xong rồi đó nha, :))), Hi hi
a) AC = ?
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:
AC2 = AB2 + BC2
= 52 + 122 = 25 + 144 = 169
⇒ AC = 13 (cm)
b) ΔEAD cân
Xét hai tam giác vuông ABE và DBE có:
AB = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)
⇒ EA = ED (hai cạnh tương ứng)
⇒ ΔEAD cân tại E.
c) K là trung điểm của DC.
Ta có: BE = 4, BC = 12
⇒ BE = 1/3 BC
Hay E là trọng tâm của ΔACD.
⇒ AE là đường trung tuyến ứng với cạnh DC
⇒ K là trung điểm của DC.
d) AD < 4EK
Ta có: EA > AB, ED > BD
Mà AD = AB + BD, AE = ED (câu b)
⇒ 2AE > AD
Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA
Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)
Ta có :
DP = AP = 12 cm
Kẻ đường cao MH của tam giác MNP
=> MH // AP do MH vuông vs PN và AP vuonfg vs PN
Áp dụng đường vuông góc ngoài của tam giác ta có : AP = MH ; VÀ AB = PN = 36 cm ( tự cm )
=> SMNP = \(\frac{AP.PN}{2}\)
\(=\frac{12.36}{2}\)
\(=216cm^2\)
Ủng hộ nha
thang kia lam sai roi thay giao bon to chua cho roi bang 360