Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- theo giả thiết ta có \(BH⊥DE\Rightarrow\widehat{BHD}=90^0\left(1\right)\).ABCD là hình vuông nên \(\widehat{BCD}=90^0\left(2\right)\)từ 1 và 2 ta có BHCD là tứ giác nội tiếp đường tròn tâm (O) có tâm O là trung điểm của BD
- Vì VBHCD nội tiếp đường tròn (O) nên\(\widehat{BHC}+\widehat{BDC}=180^0\left(3\right)\)Mà \(\widehat{BHC}+\widehat{CHK=180^0\left(4\right)}\)Từ 3,4 có \(\widehat{BCD}=\widehat{CHK}=45^0\)
- Do BHCD nội tiếp đường tròn (O) nên ta có phương tích từ K kẻ đến (O) là như nhau nên :KH.KB=KO2-OB2 (5) mà KC.KD = KO2 - OB2(6) , từ 5,6 có : KH.KB=KC.KD
d, tam giác AND đồng dạng với tam giác MAB (gg)=>AM/MB=AN/AD
=>AM.AD=AN.MB => AM^2.AD^2=AN^2.MB^2
Cộng 2 vế với AN^2.AD^2 =>AM^2.AD^2 + AN^2.AD^2 = AN^2.MB^2 + AN^2.AD^2
=>AD^2.(AM^2+AN^2)=AN^2(MB^2+AB^2)
=>AD^2(AM^2+AN^2)=AN^2.AM^2 (vì MB^2+AB^2=AM^2 theo định lý pytago)
=>1/AD^2=(AN^2+AM^2)/AM^2.AN^2
=>1/AD^2=1/AM^2+1/AN^2
1) ta có: góc BHD= góc BCD= 90độ
tứ giác BHCD có hai đỉnh H,C BD có một góc vuông
➜tứ giác BHCD là tứ giác nội tiếp
2)tứ giác BHCD là tứ giác nội tiếp (đpcm)
➜góc BDC+ góc BEC = 180 độ
mà góc CHK+ góc BEC =180 độ (bù nhau)
➩góc BDC = 45 độ (đường chéo chứa hai góc bằng nhau)➩góc CHK = 45 độ
3)xét ΔDHK và ΔBCK, ta có:
góc DHK = góc BCK = 90 độ
góc DHK chung
➜ΔDHK ∞ ΔBCK (g.g)
➜\(\dfrac{KC}{KH}\cdot\dfrac{KB}{KD}\)➜KC*KD=KH*KB (đpcm)
Xét tứ giác BHCD có:
\(\widehat{DCB}=90^o\) ( ABCD là hình vuông )
\(\widehat{DHB}=90^o\) ( \(DH\perp BH\))
\(\Rightarrow\widehat{DCB}=\widehat{DHB}=90^o\)
=> Tứ giác BHCD nội tiếp. Tâm đường tròn là trung điểm của đoạn thẳng BD.
b)
Xét \(\Delta KCB~\Delta KHD\)có
K chung
H = C = 90 độ
=> \(\Delta KCB~\Delta KHD\)( g-g )
=>\(\frac{KC}{KH}=\frac{KB}{KD}\)
=>\(KC.KD=KH.KB\)
c) Xét tam giác DBK có:
DH là đường cao thứ nhất
BC là đường cao thứ hai
=> M là trực tâm
=> KM vuông góc DB
Trình bày hơi sơ sài! :))
a, Điểm A và H cùng nhìn đoạn BD dưới 1 góc 90 =>tứ giác ABHD nội tiếp
cmtt : Điểm H và C cùng nhìn đoạn BD dưới 1 goc 90 => tứ giác BHCD nội tiếp
b, Tứ giác BHCD nội tiếp =>góc CHK=góc BDC ( vì cùng bù với góc CHB)
mà góc BDC=45=>góc CHK=45
a: góc BAD=góc BCD=góc BHD=90 độ
=>A,B,H,C,D cùng nằm trên 1 đường tròn
b: Xét ΔEHB vuông tại H và ΔECD vuông tại C có
góc HEB=góc CED
=>ΔEHB đồng dạng với ΔECD
=>EH/EC=EB/ED
=>EH*ED=EB*EC
a) Tứ giác ABCD là hình vuông (gt).
\(\Rightarrow\widehat{BCD}=90^o00\) (Tính chất hình vuông).
Xét tứ giác DBHC:
\(\widehat{BCD}=\widehat{BHD}\left(=90^o\right).\)
Mà 2 đỉnh H; C kề nhau cùng nhìn cạnh BD.
\(\Rightarrow\) Tứ giác DBHC nội tiếp (dhnb).
b) Xét \(\Delta HKD\) và \(\Delta CKB:\)
\(\widehat{K}chung.\)
\(\widehat{DHK}=\widehat{BCK}\left(=90^o\right).\)
\(\Rightarrow\text{}\Delta HKD\sim\Delta CKB\left(g-g\right).\)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KD}{KB}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow KC.KD=KH.KB.\)