Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là giao điểm AB và AD nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;-3\right)\)
Do I thuộc \(y^2=x\) nên tọa độ có dạng: \(I\left(a^2;a\right)\)
I là tâm hình thoi \(\Rightarrow d\left(I;AB\right)=d\left(I;AD\right)\Rightarrow\dfrac{\left|2a^2-a-1\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|a^2-2a-5\right|}{\sqrt{2^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}2a^2-a-1=a^2-2a-5\\2a^2-a-1=-a^2+2a+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2+a+4=0\left(vn\right)\\3a^2-3a-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-1\\a=2\end{matrix}\right.\)
TH1: \(a=-1\Rightarrow I\left(1;-1\right)\)
Do I là trung điểm AC nên tọa độ C: \(\left\{{}\begin{matrix}x_C=2x_I-x_A=3\\y_C=2y_I-y_A=1\end{matrix}\right.\) \(\Rightarrow C\left(3;1\right)\)
Đường thẳng BC song song AD và đi qua C nên có pt:
\(1\left(x-3\right)-2\left(y-1\right)=0\Leftrightarrow x-2y-1=0\)
B là giao điểm AB và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-1=0\end{matrix}\right.\) \(\Rightarrow B...\)
Tương tự, đường thẳng CD song song AB và đi qua C nên có pt:
\(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow...\Rightarrow D\)
Tương tự với trường hợp \(a=2\Rightarrow I\left(4;2\right)\)
1) Các vecto bằng vecto EF là:
\(\overrightarrow{EF}=\overrightarrow{DO}=\overrightarrow{OA}=\overrightarrow{CB}\)