Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do $AB\parallel CN$ nên áp dụng định lý Talet:
$\frac{AM}{MN}=\frac{AB}{CN}=\frac{DC}{CN}$
$\Rightarrow \frac{AM}{AM+MN}=\frac{DC}{DC+CN}$ hay $\frac{AM}{AN}=\frac{DC}{DN}$
$\Rightarrow AM=\frac{AN.DC}{DN}$
Do đó:
$\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{DN^2}{AN^2.DC^2}+\frac{1}{AN^2}$
$=\frac{1}{AN^2}.\frac{DN^2+DC^2}{DC^2}$
$=\frac{1}{AN^2}.\frac{DN^2+AD^2}{DC^2}$
$=\frac{1}{AN^2}.\frac{AN^2}{DC^2}$ (theo định lý Pitago)
$=\frac{1}{DC^2}$
Ta có đpcm.
Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.
Tam giác AEM vuông tại A có \(AB\perp EM\)
Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)
\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)
Áp dụng đl pytago vào tam giác vuông AEM:
\(AE^2+AM^2=ME^2\)
Thay vào (1) ta có:
\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)
Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Goi giao diem cua tia AE va DN la G
a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)
\(\widehat{G}+\widehat{ANG}=90^0\)
\(\widehat{AME}+\widehat{AEM}=90^0\)
\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)
Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)
Suy ra:\(AN=AE\)(2 canh tuong ung)
b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)
\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)
Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)