Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu này khó đấy = )) Làm sai chỗ nào tự sửa
B M C E F O A O'
a) MA và MB là các tiếp tuyến của (O) ( gt )
Theo tính chất của hai tiếp tuyến cắt nhau , ta có :
MA = MB
MO là tia phân giác của góc AMB
Tam giác AMB cân tại M ( MA = MB ) mà có MO là đường phân giác nên đồng thời là đường cao
=> \(MO\perp AB\) hay góc MEA = 90o
Tương tự ta có MO' là tia phân giác của góc AMC và góc MFA = 90o
MO, MO' là tia phân giác của hai góc kề bù góc AMB và góc AMC nên góc EMF = 90o
=> Tứ giác AEMF là hình chữ nhật ( vì có ba góc vuông )
b) ME . MO = MA2 ( hệ thức lượng trong tam giác MAO vuông )
MF . MO' = MA2 ( hệ thức lượng trong tam giác MAO' vuông )
=> ME . MO = MF . MO'
c) Đường tròn có đường kính BC có tâm M, bán kính MA . OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M)
d)
Gọi I là trung điểm của OO'
- I là tâm của đường tròn có đường kính OO'
- IM là bán kính ( vì MI là trung tuyến ứng với cạnh huyền của MOO' )
- IM là đường trung bình của hình thang OBCO' nên IM // OB // O'C
=> Do đó \(IM\perp BC\)
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I)
Đáp án A
Gọi O là giao điểm của AC và BD. Khi đó, đường tròn tâm O bán kính R = a/2 là đường tròn nội tiếp hình vuông ABCD.
Do O là tâm đường tròn nội tiếp hình vuông ABCD nên đường tròn tiếp xúc với các cạnh của hình vuông.
Suy ra: AB; BC; CD và DA là các tiếp tuyến của đường tròn (O).