Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c; AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
=>\(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: \(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: \(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: (HKCD) giao (ABCD)=CD
a: \(I\in BD\subset\left(SBD\right)\)
\(I\in AC\subset\left(SAC\right)\)
Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SI\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
a. \(\left(SAB\right)\cap\left(SBC\right)=?\)
Ta có: \(\left\{{}\begin{matrix}S\in\left(SAB\right),\left(SBC\right)\\B\in\left(SAB\right),\left(SBC\right)\end{matrix}\right.\)\(\Rightarrow\)\(\left(SAB\right)\cap\left(SBC\right)=SB\)
b. \(\left(SAB\right)\cap\left(SCD\right)=?\)
Xét mp (SAB), kẻ Sx//AB
Ta có: Sx//AB, AB//CD \(\Rightarrow\) CD//Sx
Lại có: \(S\in\left(SAB\right),\left(SCD\right)\)
\(\Rightarrow\)\(\left(SAB\right)\cap\left(SCD\right)=Sx\)
c. \(\left(SAD\right)\cap\left(SBC\right)=?\)
Xét mp (ABCD), ta có không song song với BC
Gọi \(I=AD\cap BC\)
Ta có: \(\left\{{}\begin{matrix}S\in\left(SAD\right),\left(SBC\right)\\I\in\left(SAD\right),\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\)\(\left(SAD\right)\cap\left(SBC\right)=SI\)
a: Trong mp(ABCD), Gọi giao của AC và BD là O
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà S thuộc (SAC) giao (SBD)
nên (SAC) giao (SBD)=SO
b:Trong mp(ABCD), Gọi giao của AB và CD là M
\(M\in AB\subset\left(SAB\right)\)
\(M\in CD\subset\left(SCD\right)\)
=>M thuộc (SAB) giao (SCD)
mà S thuộc (SAB) giao (SCD)
nên (SAB) giao (SCD)=SM
c: Trong mp(ABCD), gọi N là giao của AD với BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)
a: \(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
=>(SAD) giao (SBC)=xy, xy đi qua S, xy//AD//BC
b: Chọn mp(SBC) có chứa BC
\(P\in SC\subset\left(SBC\right)\)
\(P\in\left(MNP\right)\)
=>\(P\in\left(MNP\right)\cap\left(SBC\right)\)
mà NP//SB
nên (MNP) giao (SBC)=xy, xy đi qua P và xy//NP//SB
=>(MNP) giao (SBC)=PN
Gọi I là giao của PN với BC
=>I trùng với N
a)
Ta có:
Giả sử:
⇒ O ∈ (SAC) ∩ (SBD)
⇒ (SAC) ∩ (SBD) = SO
b) Ta có:
Ta lại có
c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.
Gọi I, J lần lượt là trung điểm của BC, CD.
Ta có I J / / G 1 G 2 nên giao tuyến của hai mặt phẳng ( A G 1 G 2 ) và (ABCD) là đường thẳng d qua A và song song với IJ
Gọi O = IJ ∩ AC, K = G 1 G 2 ∩ S O , L = AK ∩ SC
L G 2 cắt SD tại R
L G 2 cắt SB tại Q
Ta có thiết diện là tứ giác AQLR.
a: \(I\in AC\subset\left(SAC\right)\)
\(I\in BD\subset\left(SBD\right)\)
Do đó: \(I\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SI\)
b: \(SD\subset\left(SCD\right)\)
\(SD\subset\left(SAD\right)\)
Do đó: \(SD=\left(SCD\right)\cap\left(SAD\right)\)
c: \(K\in SD\subset\left(SAD\right)\)
\(K\in\left(KAB\right)\)
Do đó: \(K\in\left(KAB\right)\cap\left(SAD\right)\)
mà \(A\in\left(AKB\right)\cap\left(SAD\right)\)
nên \(\left(KAB\right)\cap\left(SAD\right)=KA\)