Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
A G K I E B D C H
Ta có:
\(AB=AC\)
\(\Rightarrow\Delta ABC\)là tam giác cân
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Do \(\widehat{ACB}\)và \(\widehat{KCE}\)là 2 góc đối đỉnh
\(\Rightarrow\widehat{ACB}=\widehat{KCE}\)
Xét \(\Delta BDH\)(vuông) và \(\Delta CEK\)(vuông) có:
\(BD=CE\)
\(\widehat{DBH}=\widehat{ECK}\left(=\widehat{ACB}\right)\)
\(\Rightarrow\Delta BDH=\Delta CEK\left(ch.gn\right)\)
\(\Rightarrow HD=EK\)
Ta có:
\(\widehat{DIH}=\widehat{KIE}\)(đối đỉnh)
\(\widehat{DHI}=\widehat{EKI}\)(=90O)
\(\Rightarrow\widehat{HDI}=\widehat{KEI}\)
Xét \(\Delta DHI\)và \(\Delta EKI\)có:
\(\widehat{DHI}=\widehat{EKI}\)
\(HD=EK\)
\(\widehat{HDI}=\widehat{KEI}\)
\(\Rightarrow\Delta DHI=\Delta EKI\left(g.c.g\right)\)
\(\Rightarrow DI=IE\)
Do \(\hept{\begin{cases}DI< DE\\DI=IE\end{cases}}\)
Vậy I là trung điểm DE