Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
Xét ΔADF và ΔEDC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=CE
a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))
\(\widehat{ACF}=\dfrac{\widehat{ACB}}{2}\)(CF là tia phân giác của \(\widehat{ACB}\))
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{ACF}\)
Xét ΔABE và ΔACF có
\(\widehat{ABE}=\widehat{ACF}\)(cmt)
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(g-c-g)
Suy ra: BE=CF(Hai cạnh tương ứng)
c) Xét ΔABC có
BE là đường phân giác ứng với cạnh AC(gt)
CF là đường phân giác ứng với cạnh AB(gt)
BE cắt CF tại D(gt)
Do đó: D là tâm đường tròn nội tiếp ΔABC(Định lí ba đường phân giác)
Suy ra: D cách đều ba cạnh của tam giác ABC
hay DM=DK=DN(Đpcm)
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE(ΔBAD=ΔBED)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(1)
ta có: DF=DC(ΔDAF=ΔDEC)
=>D nằm trên đường trung trực của CF(2)
ta có: IF=IC
=>I nằm trên đường trung trực của CF(3)
Từ (1),(2),(3) suy ra B,D,I thẳng hàng
Hình bạn Tự vẽ nha!!!
a, Xét \(\Delta ABM\)và \(\Delta DCM\)
có AM=MD(gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM=MC(gt)
Từ 3 điều trên => 2 tam giác Trên bằng Nhau
b, Vì \(\Delta ABM\) = \(\Delta DCM\)(câu a)
=> \(\widehat{ABM=}\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong
Từ 2 điều trên Ta được \(AB//CD\)
c, Xét \(\Delta BFC\) vuông tại \(\widehat{BFC}=90^o\)(gt)
=> \(\widehat{BCF}+\widehat{FBC}=90^o\)(tính chất tam giác vuông)
Mà \(\widehat{FBC}=\widehat{BCD}\)(câu b)
Từ 2 điều trên ta được \(\widehat{BCF}+\widehat{BCD}=90^o=>\widehat{FCD}=90^o\)
Hay \(CF\perp CD\)tại C
Còn câu d thì mình có việc thì để sau nhé!!!
Chúc bạn Hk ttoto!!@@
\(\Delta BEM=\Delta CFM\text{(cạnh huyền - góc nhọn) }\Rightarrow BE=CF\)