Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\widehat{C1}+\widehat{C2}=180^0\) ( kề bù ) (1)
\(\widehat{C1}-\widehat{C2}=40^0\) (giả thiết ) (2)
Cộng (1) và (2)
\(\Rightarrow\left(\widehat{C1}+\widehat{C2}\right)+\left(\widehat{C1}-\widehat{C2}\right)=180^0+40^0\)
\(\Rightarrow2.\widehat{C1}=220^0\)
\(\Rightarrow\widehat{C1}=110^0\)
\(\Rightarrow\widehat{C2}=70^0\)
Mặt khác
\(\begin{cases}\widehat{C1}=\widehat{D2}\\\widehat{C1}=\widehat{D1}\end{cases}\) (a//b)
\(\Rightarrow\begin{cases}\widehat{D1}=70^0\\\widehat{D2}=110^0\end{cases}\)
Có: \(\widehat{C_1}+\widehat{C_2}=180\) (cạp góc kề bù)
=> \(\begin{cases}\widehat{C_1}+\widehat{C_2}=180\\\widehat{C_1}-\widehat{C_2}=40\end{cases}\) \(\Leftrightarrow\begin{cases}40+\widehat{C_2}+\widehat{C_2}=180\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)
\(\Leftrightarrow\begin{cases}2\widehat{C_2}=140\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{C_2}=70\\\widehat{C_1}=110\end{cases}\)
=> \(\widehat{C_1}=\widehat{D_2}=110\) (cặp góc soletrong do a//b)
\(\widehat{C_2}=\widehat{D_1}=70\) (cặp góc soletrong do a//b)
1)
Ta có: góc xCt và góc xOy là 2 góc đồng vi
Vậy để Ct//Oy thì góc xCt= góc xOy
Mà góc xOy=60 độ nên góc xCt=60 độ
2) Ta có góc A1+góc A2+ góc B1=288 độ
Mà góc A1+góc A2=180 độ ( 2 góc kề bù)
=> góc B1= 288 độ - 180 độ = 108 độ
Lại có : góc A1 = 2/3 góc A2
=> góc A1= 180 độ : (2+3) . 2 = 72 độ
Mặt khác: góc A1 + góc B1= 72 độ + 108 độ = 180 độ
Mà góc A1 và góc B1 là 2 góc ngoài cung phía nên a//b
Bạn có thể vẽ ra tập rồi trả lời câu hỏi mới dễ bạn à.
Còn trên đây mk ko biết vẽ hình.
Hoặc bạn có thể vào học 24 hoặc câu hỏi tương tự tham khảo.
Chúc bạn học tốt !
Do AC và BD đều vuông góc với CD => AC // BD
Vẽ đường thẳng dd' đi qua E sao cho CA // dd'; BD // dd'
C D A B d d' 45 60 E
Do AC // dd' mà CAE và AEd' là 2 góc so le trong => CAE = AEd' = 45o
Do BD // dd' mà BEd và BEd' là 2 góc so le trong => BEd = BEd' = 60o
Lại có: AEd' + BEd' = AEB
=> 45o + 60o = AEB
=> AEB = 105o
1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do
Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)
Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá
2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)
Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)
Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B
\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)
\(\widehat{B_1}\) = \(\widehat{B_2}\) = 1000 (hai góc đối đỉnh)
\(\widehat{C_2}\) = \(\widehat{B_1}\) = 1000 (hai góc đồng vị)
\(\widehat{C_3}\) + \(\widehat{C_2}\) = 1800 ⇒ \(\widehat{C_3}\) = 1800 - 1000 = 800
\(\widehat{D_1}\) = \(\widehat{A_1}\) = 600 (so le trong)
\(\widehat{DAH}\) = 900 - 600 = 300
Mik ns mấy cái số tại mik sợ nó bị mờ nhoa