Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a.
Xét \(\Delta ABC\) có :
\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )
\(\Rightarrow\widehat{BCA}=40^o\) (1)
Ta có Ax là tia đối của AB
suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)
\(\widehat{CAx}=80^o\)
lại có Ay là tia phân giác \(\widehat{CAx}\)
\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)
Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)
mà chúng ở vị trí so le trong
\(\Rightarrow\) Ay//BC
Bài 2
Rảnh làm sau , đến giờ học rồi .
a) Ta có: OA ⊥ OM (GT)
\(\Rightarrow\widehat{AOM}=90^0\)
Ta có: OB ⊥ ON (GT)
\(\Rightarrow\widehat{BON}=90^0\)
b)
Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)
=> Góc AON = Góc BOM
hình bạn tự vẽ nha
a) \(\Delta ABC\) có \(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)
vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)
vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)
từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)
xét tam giác BCD và tam giác CBE có:
\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)
\(\stackrel\frown{B}=\stackrel\frown{C}\)
BC chung
\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)
b) \(\Delta BOC\)có \(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)
c) xét \(\Delta AOB\)và \(\Delta AOC\)có
AO chung
AB=AC
\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)
\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)
\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)
vì \(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)
\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)
Xét \(\Delta OAK\)và \(\Delta OAH\)có:
\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)
\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)
OA chung
\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)
\(\Rightarrow OH=OK\)
nếu sai ở đâu mong bạn bỏ qua cho nha
a: Vì góc xAT=góc xOy
mà hai góc đồng vị
nên Oy//AT
b: Vì Oy//AT
và Oy vuông góc với AH
nên AT vuông góc với AH
c: góc OAH=90-70=20 độ
a) góc A = 70o, => B + C = 110o
=> B =(110 + 10) : 2 = 60
C = 60 - 10 = 50
b) góc A = 100 , => B + C = 80
=> B = (80 + 50) : 2 = 65
C = 65 - 50 = 15
c) B = 2C => 180 - 60 = 3C = 120
=> C = 40
=> B = 40 . 2 = 80
x O y a b
a) Vì Oa ⊥ Ox ⇒ \(\widehat{aOx}\) = 90o
Ta có : \(\widehat{aOy}+\widehat{aOy}=120^o\)
⇒ \(\widehat{aOy}+90^o=120^o\)
⇒ \(\widehat{aOy}=120^o-90^o=30^o\)
b) Vì Ob ⊥ Oy ⇒ \(\widehat{yOb}=90^o\)
Ta có : \(\widehat{yOb}+\widehat{bOx}=\widehat{yOx}\)
⇒ \(90^o+\widehat{bOx}=120^o\)
⇒ \(\widehat{bOx}=120^o-90^o=30^o\)
Lại có : \(\widehat{aOb}+\widehat{bOx}=\widehat{aOx}\)
⇒ \(\widehat{aOb}+30^o=90^o\)
⇒ \(\widehat{aOb}=90^o-30^o=60^o\)
⇒ \(\widehat{aOb}+\widehat{xOy}=60^o+120^o=180^o\)
a) Ta có :\(\hept{\begin{cases}a\perp c\\b\perp c\end{cases}}\Rightarrow a//b\)
b) Ta có : \(\widehat{C_1}=\widehat{C_2}=50^{\text{o}}\)(2 góc đối đỉnh)
mà \(\widehat{C_1}+\widehat{D_1}=180^{\text{o}}\)(a//b)
=> \(\widehat{D_1}=130^{\text{o}}\)
=> \(\widehat{D_2}=50^{\text{o}}\)
c) Ta có \(\widehat{ODM}+\widehat{D_1}=180^{\text{o}}\)
=> \(\widehat{ODM}=50^{\text{o}}\)
mà \(\hept{\begin{cases}\widehat{ODM}+\widehat{OMD}=100^{\text{o}}\\\widehat{OMD}+\widehat{M_1}=180^{\text{o}}\end{cases}}\Rightarrow\widehat{M_1}-\widehat{ODM}=80^{\text{o}}\Rightarrow\widehat{M_1}=130^{\text{o}}\)